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Preface

Effective asset management is not only a matter of identifying desirable
investments: it also requires optimally structuring the assets within the
portfolio. This is because the investment behavior of a portfolio is typi-
cally different from the assets in it. For example, the risk of a portfolio of
U.S. equities is often half the average risk of the stocks in it.

Prudent investors concern themselves with portfolio risk and return.
An understanding of efficient portfolio structure is essential for opti-
mally managing the investment benefits of portfolios. Effective portfolio
management reduces risk while enhancing return. For thoughtful inves-
tors, portfolio efficiency is no less important than estimating risk and
return of assets.

Most institutional investors and financial economists acknowledge
the investment benefits of efficient portfolio diversification. Optimally
managing portfolio risk is an essential component of modern asset man-
agement. Markowitz (1959, 1987) gave the classic definition of portfolio
optimality: a portfolio is efficient if it has the highest expected (mean or
estimated) return for a given level of risk (variance) or, equivalently, least
risk for a given level of expected return of all portfolios from a given uni-
verse of securities. Markowitz mean-variance (MV) efficiency is a practi-
cal and convenient framework for defining portfolic optimality and for
constructing optimal stock portfolios and asset allocations. A number of
commercial services provide optimizer software for computing MV effi-
cient portfolios.
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INVESTOR ACCEPTANCE

Modern asset management typically employs many theoretical financial
concepts and advanced analytical techniques. Perhaps the most outstand-
ing example is in the management of derivative instruments. Within a
few years of the publication of seminal papers (Black & Scholes, 1973;
Merton, 1973) and the opening of derivative exchanges, an extensive indus-
try applying quantitative techniques to derivative strategies emerged. In
a similar fashion, many fixed income managers use sophisticated port-
folio structuring techniques for cash flow liability management.' In con-
trast, many institutional equity managers do not use MV optimizers to
structure portfolios.

The relatively low level of analytical sophistication in the culture of
institutional equity management is one often-cited reason for the lack
of acceptance of MV optimization, along with organizational and politi-
cal issues. The investment policy committee and an optimizer perform
essentially the same integrative investment function. Consequently, the
firm’s senior investment officers may view an optimizer, and the quanti-
tative specialist who manages it, as usurping their roles and challenging
their control and political power in the organization.

Despite these reasons, it is hard to imagine why investment managers
do not behave in their best interests as well as those of their clients. Expe-
rience in derivatives and fixed income management demonstrates that the
investment community quickly adopts highly sophisticated analytics and
computer technology when provably useful. If cultural, political, or com-
petence factors limit the use of MV optimizers in traditional investment
organizations, new firms should form without these limitations, with
the objective of leveraging the technology and dominating the industry.
Indeed, many “quantitative” equity management firms, formed over the
past 35 years, have this objective. However, the “Markowitz optimiza-
tion enigma”—the fact that many traditional equity managers ignore MV
optimization—can be largely explained without recourse to irrationality,
incompetence, or politics (Michaud, 1989a). The basic problem is that MV
portfolio efficiency has fundamental investment limitations as a practical
tool of asset management. It is likely that the limitations of MV optimiz-
ers have been an important factor in limiting the success of many quanti-
tative equity managers relative to their more traditional competitors.

THE FUNDAMENTAL ISSUE

Although Markowitz efficiency is a convenient and useful theoretical
framework for defining portfolio optimality, in practiceit is a highly error-
prone and unstable procedure that often results in “error maximized” and

1. Liebowitz (1986) describes some of these techniques.
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"investment irrelevant” portfolios (Jobson & Korkie, 1980, 1981; Michaud,
1989a). Proposed alternative optimization technologies share similar, if
not even more significant, limitations. MV efficiency limitations in prac-
tice generally derive from a lack of statistical understanding of the MV
optimization process. A “statistical” view of MV optimization leads to
new procedures that eliminate the most serious deficiencies for many
practical applications. Statistical MV optimization may enhance invest-
ment value while providing a more intuitive framework for asset man-
agement. A statistical view also challenges and corrects many current
practices for optimized portfolio management.

OVERVIEW

This book describes the problems associated with MV optimization as a
practical tool of asset management and provides resolutions that reflect
its essential, though often neglected, statistical character. A review of
proposed alternatives of MV optimization is given and their theoretical
and practical limitations are noted. A “statistical” perspective serves as
a valuable route for the development and application of powerful tech-
niques that enhance the practical value of MV optimized portfolios.
The goal is to conserve the many benefits of traditional MV optimiza-
tion while enhancing investment effectiveness and avoiding its rigidity.
New tools are developed that enable an intuitive effective framework for
meeting the demand characteristics from institutional asset managers to
sophisticated financial advisors and investors. A simple asset allocation
example illustrates the issues and new procedures. The text maintains a
practical perspective throughout.

The second edition is extensively revised. Chapters 7 and 9 are nearly
completely rewritten with new techniques, research, and expanded
scope. Chapters 4, 5, 6, 8, 10, and 11 are extensively revised. The remain-
ing chapters have also been updated.

The new reader will find a rich investment-practice—informed set of
ideas, while the reader of the first edition will find extensive new mate-
rial, including expansion of scope as well as development of earlier ideas.
The new edition benefits from nearly 7 years of the authors’ experience
applying the technology to a wide spectrum of practical investment
needs, including those of institutional asset managers, investment strat-
egists, high-net-worth advisors, institutional consultants, and financial
advisors worldwide. The authors also have nearly 3 years of actual asset
management using the technology with favorable results.

FEATURES

This text is the first to integrate and systematically treat practical MV
optimization from a statistical, rather than a numerical, point of view.
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The focus is to enhance the investment value of MV optimized portfolios
in asset management practice. The features include:

* The Resampled Efficient Frontier™ (REF):2 REF optimized port-
folios are provably effective at enhancing risk-adjusted perfor-
mance. Implications of a more effective optimality on ineffective
practices in contemporary asset management are discussed.

* Resampled Efficiency™ (RE) Rebalancing:? RE rebalancing pro-
vides statistically rigorous procedures for trading, monitoring,
and asset importance analysis for practical management of MV
optimized portfolios.

* Enhanced Index-Relative Optimization: New REF optimiza-
tion techniques are presented for enhancing risk-adjusted per-
formance of index-relative optimized and long-short portfolios,
including new tools for large index management.

¢ Enhanced Liability-Relative Optimization: Discussion of eco-
nomic liability modeling and REF optimization with applications
to pension liability management.

¢ Improved Estimation: Neglected modern statistical techniques
for improving the forecast value of historically estimated risk
and return.

¢ Active Management Input Estimation: Bayes techniques for
improving the investment value of active return.

¢ Comparison of Unconstrained and Linear Constrained MV Opti-
mization: The discussion includes the serious limitations of MV
optimization analytical formulas and the character of computa-
tional techniques.

¢ Optimization Design: Institutional techniques for managing invest-
ment information properly and avoiding optimization errors

¢ MV Optimization Review: Includes review of basic principles
and limitations of alternative approaches.

PATENTS

The reader should note that various techniques and practices described
within this book particularly in chapters 6, 7, and 9, are covered by the
claims of patents, issued and pending, in the US and other countries,
including US Patent Nos. 6,003,018 and 6,928,418. U.S. law provides that
any use within the United States of a patented invention during the

2. REF optimization, invented by Richard Michaud and Robert Michaud, first described in Michaud
(1998, Chapter 6), is protected by U.S. and Israeli patents and patents pending worldwide. New Frontier
Advisors, LLC {NFA) is exclusive worldwide licensee.
3.RE rebalancing, invented by Robert Michaud and Richard Michaud, firstdescribed in itscurrent formin
Michaud and Michaud (2002), is protected by U.S. patents and patents pending worldwide. New Frontier
Advisors, LLC (NFA) is exclusive worldwide licensee.
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term of the patent and without the authority of the patent owner is an
infringement of the patent, while corresponding provisions apply in
other jurisdictions. Any party contemplating the use of a patented article
or process, as defined by the claims of a patent, must obtain authorization
of the patent owner before beginning any use. A request for permission
to use the invention should specify, as completely as possible, the nature
of the intended use.

DEMO OPTIMIZER

A CD that provides access to a demo Optimizer is included with the pur-
chase of the book. It offers a limited-function version of the optimization
and rebalancing procedures described in this book. When inserted into
your CD drive, a pop-up window will appear to guide you in signing
up for an account to run the software for a limited time. The Optimizer
allows you to generate some exhibits similar to those in the book using
the preloaded base case data described in Chapter 2. You are able to make
changes with constraints and other assumptions to analyze their effects.
You can also enter your own sample data set for experimenting with the
RE optimizer and rebalancer. The Optimizer automatically compares the
classical MV solution to the RE solution in tables and charts. The Opti-
mizer software is provided for non-commercial educational uses only.
All other applications are proscribed.

AUDIENCE AND ANALYTICAL REQUIREMENTS

Knowledge of statistical methods and modern finance at the level of a
relatively nontechnical paper in the Financial Analysts Journal, Journal of
Investment Management, or Journal of Portfolio Management is desirable.
CFAs and MBAs should be well equipped to manage the material. The
discussions are mostly self-contained and generally require little addi-
tional reading. The technical level required of the reader in the body of
the text is relatively minimal. The footnotes and appendices discuss tech-
nical issues and topics of special interest. Experience in institutional asset
management practice is a plus.

The primary audience for the text is institutional investment practi-
tioners, sophisticated investors, investment strategists, financial advi-
sors at various levels of sophistication, and academic and professional
researchers in applied financial economics. Investors, investment manag-
ers, strategists, consultants, trustees, and brokers will be interested given
the widespread use of MV portfolio construction and asset management
techniques and the need to stay current in investment technology. Sophis-
ticated financial advisors will have interest given the growing use of
model portfolios and investment strategies for 401(k) investment and the
need to understand portfolio construction and Exchange Traded Funds
(ETF} investments. Academic and professional financial economists will
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have interest when using and understanding MV optimization. The book
may be useful as a supplement in advanced undergraduate and graduate
courses in investment management, in graduate courses in quantitative
asset management, and for courses on portfolio optimization in institu-
tional asset management.
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Introduction

MARKOWITZ EFFICIENCY

Markowitz (1959) mean-variance (MV) efficiency is the classic paradigm
of modern finance for efficiently allocating capital among risky assets.
Given estimates of expected return, standard deviation or variance,
and correlation of return for a set of assets, MV efficiency provides the
investor with an exact prescription for optimal allocation of capital. The
Markowitz efficient frontier (Exhibit 1.1) represents all efficient portfo-
lios in the sense that all other portfolios have less expected return for a
given level of risk or, equivalently, more risk for a given level of expected
return. In this framework, the variance or standard deviation of return
defines portfolio risk. MV efficiency considers not only the risk and
return of securities, but also their interrelationships.

Exhibit 1.1 illustrates these concepts: Portfolio A is assumed to be the
investor’s current portfolio, with a given expected return and standard
deviation. Portfolio B is the efficient portfolio that has less risk at the
same level of expected return of portfolio A. Portfolio C is the efficient
portfolio that has more expected return at the same level of risk as port-
folio A. The efficient frontier describes the mean and standard deviation
of all efficient portfolios.

In most modern finance textbooks, MV efficiency is the criterion
of choice for defining optimal portfolio structure and for rationaliz-
ing the value of diversification. Markowitz efficiency is also the basis
for many important advances in positive financial economics. These
include the Sharpe (1964)-Lintner (1965) capital asset pricing model
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Exhibit 1.1 Mean Variance Portfolio Efficiency

(CAPM) and recognition of the fundamental dichotomy between system-
atic and diversifiable risk.

Many investment situations may use MV efficiency for wealth alloca-
tion. An international equity manager may want to find optimal asset
allocations among international equity markets based on market index
historic returns. A plan sponsor may want to find an optimal long-term
investment policy for allocating among domestic and foreign bonds,
equities, and other asset classes. A domestic equity manager may want
to find the optimal equity portfolio based on forecasts of return and esti-
mated risk. MV optimization is sufficiently flexible to consider various
trading costs, institutional and client constraints, and desired levels of
risk. In these cases, and in others, MV efficiency serves as the standard
optimization framework for modern asset management.

AN ASSET MANAGEMENT TOOL

MV optimization is useful as an asset management tool for many appli-
cations, including:

1. Implementing investment objectives and constraints

Controlling the components of portfolio risk

Implementing the asset manager’s investment philosophy, style,
and market outlook

Efficiently using active return information (Sharpe, 1985)
Conveniently and efficiently imbedding new information into
portfolios

SN

o
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TRADITIONAL OBJECTIONS

Academics and practitioners have raised a number of objections to MV
efficiency as the appropriate framework for defining portfolio optimality.
These “traditional” criticisms of MV efficiency tend to fall into one of the
following categories:

1. Investor Utility: the limitations of representing investor util-
ity and investment objectives with the mean and variance of
return

2. Normal Distribution: the limitations of representing return with
normal distribution parameters

3. Multiperiod Framework: the limitations of MV efficiency as a
single-period framework for investors with long-term investment
objectives, such as pension plans and endowment funds

4. Asset-Liability Financial Planning: claims that asset-liability simu-
lation is a superior approach for asset allocation

Chapter 3 examines each category of objection in detail. These tradi-
tional objections often do not address the most serious limitations of MV
optimizers, nor do they provide useful alternatives in many cases. On
the other hand, the robustness of MV optimization is often unappreci-
ated, and several workarounds make the MV framework useful in many
situations of practical interest.

THE MOST IMPORTANT LIMITATIONS

In practice, the most important limitations of MV optimization are insta-
bility and ambiguity. MV optimizers function as a chaotic investment
decision system. Small changes in input assumptions often imply large
changes in the optimized portfolio. Consequently, portfolio optimality
is often not well defined. The procedure overuses statistically estimated
information and magnifies the impact of estimation errors. It is not sim-
ply a matter of garbage in, garbage out, but rather a molehill of garbage
in, a mountain of garbage out. The result is that optimized portfolios are
“error maximized” and often have little, if any, reliable investment value.
Indeed, an equally weighted portfolio may often be substantially closer
to true MV optimality than an optimized portfolio.

The frequent failure of optimized portfolios to meet practical invest-
ment objectives has led a number of sophisticated institutional investors
to abandon the method for alternative procedures and to rely on intuition
and priors. The limitations of MV optimization have also contributed to
the lack of widespread acceptance of quantitative equity management.
The problems of MV optimization are not easily resolved with alterna-
tive risk measures, objective functions, or simulation procedures: they
are endemic to most optimization procedures.
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RESOLVING THE LIMITATIONS OF MEAN-VARIANCE OPTIMIZATION

The problems of MV optimization instability and ambiguity are ulti-
mately those of over-fitting data. Statistical estimates define an efficient
frontier. Because of variability in the input estimates, many portfolios
are statistically as efficient as the ones on the efficient frontier. In other
words, an appropriate statistical test would not be able to differentiate
the efficiency of many portfolios off the efficient frontier from those on
it. A computation of “statistically equivalent” efficient portfolios! reveals
the variability and essential statistical character of MV optimization. A
statistical perspective helps to resolve many of the most serious practi-
cal limitations of MV optimization and is often associated with a signifi-
cantly reduced need to trade.

Many of the most important methods for reducing the instability and
ambiguity of the optimization process and enhancing its investment
value are based on statistical procedures that have largely been ignored
by the financial community. These techniques come from financial the-
ory, econometrics, and institutional research and practice.

Practitioners may ignore procedures for enhancing MV optimiza-
tion for a variety of reasons. The enormous prestige and goodwill that
Markowitz and his work enjoy in the investment community have led
many to ignore the obvious practical limitations of the procedure. Many
influential consultants, software providers, and asset managers have
vested commercial interests in the status quo. For others, practical con-
siderations have hampered implementation. Until recently, some of the
statistical techniques have been inconvenient or inaccessible because they
required high-speed computers and advanced mathematical or statistical
software. Finally, the statistical character of MV optimization requires a
fundamental shift in the notion of portfolio optimality, the need to think
statistically, and a significant change in procedures.

ILLUSTRATING THE TECHNIQUES

Asset allocations are important in their own right and provide a useful
framework for analyzing many of the fundamental problems of opti-
mization. A simple global asset allocation problem illustrates several of
these issues and alternative procedures.

The new methods presented in the following chapters can significantly
reduce the impact of estimation errors, enhance the investment mean-
ing of the results, provide an understanding of precision, and stabilize
the optimization. In isolation, each procedure can be helpful; together,
they may have a substantial impact on enhancing the investment value of
optimized portfolios.

1. Chapter 7 provides procedures for defining statistical equivalent efficient portfolios.



Classic Mean-Variance Optimization

This chapter describes in relatively simple terms some of the essential
technical issues that characterize MV optimization and portfolio effi-
ciency. For the sake of compact discussion, the introduction of some basic
assumptions and mathematical notation will be useful. An example of
an asset allocation optimization illustrates the techniques presented here
and throughout the text.

PORTFOLIO RISK AND RETURN

Suppose estimates of expected returns, variances or standard deviations,
and correlations for a universe of assets.! The expected return, p (mu), of
a portfolio of assets D, p,, is the portfolio-weighted expected return for
each asset.? The variance o? (sigma squared) of a portfolio of assets F, 6,2,
depends on the portfolio weights, the variance of the assets in the port-
folio, and the correlation, p (rtho), between pairs of assets.? The standard
deviation o is the square root of the variance and is a useful alternative

1. As noted below, the covariance can also define the optimization risk parameters.

2. Statisticians use the Greek letters p and o to represent mean and standard deviation. Let i, i = 1..N,
refer to the expected return for asset i in the N asset universe. Let w, refer to the weight of asset i in
portfolio P. The sum of portfolic weights w, times the expected returns w, for each asset i in the uni-
verse is equal to the expected return for portfolio P. In mathematical notation, the symbol Z; denotes
the summation from 1 to N and the portfolio expected return is defined as: y, = Zwig
3. Following the notation above, the variance of portfolio P, 6,7, is the double sum of the product for all
ordered pairs of assets of the portfolio weight for asset i, the portfolio weight for asset j, the standard
deviation for asset i, the standard deviation for asset j, and the correlation between asset i and j. In
mathematical notation, o, = LE \\'I*‘\’V’G;Gr‘pl‘r, where o is the standard deviation (square root of the
variance) and p is the correlation. The quantity i) is known as the covariance. It is equal to UI‘UJ‘pLI

7
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Exhibit 2.1 Portfolio Risk and Return: Two-Asset Case

for describing asset risk. One reason for preferring the standard devi-
ation to the variance is that it is in the same units of return as the mean.

Exhibit 2.1 shows the mean and standard deviation for a portfolio con-
sisting of two assets. It illustrates some essential properties of portfolio
expected return and risk. Asset 1 has an expected return of 5% and risk
of 10%, and asset 2 has an expected return of 10% and risk of 20%. Five
curves connect the two assets and display the risk and expected return
of portfolios, ranging from 100% of capital in asset 1 to 100% in asset 2.
The asset correlations associated with the five curves (from right to left)
are 1.0, 0.5, 0, 0.5, and -1.0.

The five curves illustrate how correlations and portfolio weights affect
portfolio risk and expected return. When the correlation is 1, as in the
extreme right-hand curve in the exhibit, portfolio risk and expected
return is a weighted average of the risk and return of the two assets. In
this case, there is no benefit to diversification. In all other cases, except
for the assets themselves, portfolio risk is less than the weighted average
of the risk of the assets. In most cases, asset correlations are less than 1.
U.S. stock correlations are often within a 0.3 to 0.5 range. As the level of
correlation diminishes, the amount of available risk reduction increases.
In the case of a =1 correlation between two assets (the extreme left-hand
curve), it is possible to eliminate portfolio risk.

and is often used as an alternate way to define the variance. The covariance matrix X consists of all
ordered pairs of the covariances.
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DEFINING MARKOWITZ EFFICIENCY

Exhibit 2.1 shows that an appropriate set of portfolio weights may sig-
nificantly reduce portfolio risk in many cases. The notion of defining an
optimal set of portfolio weights to optimize risk and return is the basis of
Markowitz portfolio efficiency. The efficiency criterion states:

A portfolio P* is MV efficient if it has least risk for a given level of
portfolio expected return.*

The MV efficiency criterion is equivalent to maximizing expected
portfolio return for a given level of portfolio risk.

A portfolio P* is MV efficient if it has the maximum expected
return for a given level of portfolio risk.

Which formulation of portfolio efficiency is used is a matter of
convenience.

As Exhibit 1.1 indicates, each portfolio on the efficient frontier satisfies
the efficiency criterion. The efficient frontier is monotonic increasing in
the mean return as a function of increasing portfolio risk.

OPTIMIZATION CONSTRAINTS

Linear constraints are generally included in institutional MV port-
folio optimization. For example, optimizations typically assume that
portfolio weights sum to 1 (budget constraint)® and are nonnegative
(no-short-selling constraint).” The budget condition is a linear equal-
ity constraint on the optimization. The no-short-selling condition is a
set of sign constraints or linear inequalities (one for each asset in the
optimization) and reflects avoidance of unlimited liability investment
often required in institutional contexts. In practice, optimizations often
include many additional linear inequality and equality constraints, par-
ticularly for equity portfolios.

The budget and no-short-selling constraints form a standard set of opti-
mization constraints that are used in many of the optimization illustrations
in the text. Recently, advances in trading technology have made short-
selling strategies more economically viable. Long-short portfolio optimiza-
tion may include several assets with bounded negative weight constraints.
Long-short investing is addressed more specifically in Chapter 9. As will
be shown, the statistical methods and innovations described in the text,
properly implemented, also apply to long-short and leverage optimization
strategies.

4. Formally, portfolio P* is MV efficient if, for any portfolio P, up = pp. implies a2 > o2
5. Formally, portfolio I'* is MV efficient if, for any portfolio I’ o7 = 6,7 implies pp < ..
6. In mathematical notation, the budget constraint implies that I w, = 1.

7. In mathematical notation, “’12 0, for all portfolio assets.
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Exhibit 2.2 Residual Risk and Return Portfolio Efficiency

THE RESIDUAL RISK-RETURN EFFICIENT FRONTIER

A variation of classic Markowitz MV efficiency called benchmark
optimization is based on “residual” return. (Given an appropriate bench-
mark, the difference between asset and benchmark return defines residual
return.) It is convenient to use the following notation for MV residual
return efficiency. Let:

o = expected residual return
®? = residual return variance.

The definition of Markowitz efficiency for residual return is precisely
the same as before, with « and o replacing p and o.

By definition, the benchmark has zero expected residual return and
residual risk. In many applications, a portfolio, such as an index, defines
the benchmark. Exhibit 2.2 illustrates the notion of MV residual return
efficiency. In this case, an investor with portfolio A wants to optimize
expected residual return at the same level of residual risk. The exhibit
assumes that the benchmark return is a feasible portfolio. The efficient
frontier is the collection of all portfolios with maximum o for all possible
levels of portfolio residual risk.

COMPUTER ALGORITHMS

Several methods are available for estimating MV efficient portfolios. The
method used may depend on the constraints. For example, an MV opti-
mization that includes only linear equality constraints, such as the budget
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constraint, can be solved analytically with matrix algebra similar to a
linear regression.® On the other hand, an MV optimization that includes
linear inequality constraints requires numerical analysis procedures for
solution.

"Quadratic programming” is the technical term for the numerical
analysis procedure used to compute MV efficient portfolios in practice.
Quadratic programming algorithms allow maximization of expected
return and minimization of the variance, subject to linear equality and
inequality constraints. The term guadratic refers to the variance in the
optimization objective; programming refers to optimizations that include
linear inequality as well as equality constraints.

Many algorithms are used for computing MV efficient portfolios. The
choice may depend on convenience, computational speed, number of
assets, number and character of constraints, and required accuracy. Vari-
ous tradeoffs govern the choice of algorithm for a given problem. The
optimization examples in this and following chapters use an exact quad-
ratic programming procedure.!’

ASSET ALLOCATION VERSUS EQUITY PORTFOLIO OPTIMIZATION

Asset allocation and equity portfolio optimization are the two typical
applications of MV optimization in asset management. In both cases the
optimization finds optimal allocations of capital to maximize expected
return and minimize risk subject to various constraints. The underlying
optimization issues in both cases are those illustrated in Exhibits 1.1 or
2.2. There are, however, some noteworthy differences between asset allo-
cation and equity portfolio optimization.

In an asset allocation study, the number of risky assets rarely exceeds
50 and is typically in the range of 5 to 20. The number of optimization
constraints are often little more than budget and sign constraints. The
assets generally include broad asset categories, such as U.S. equities and
corporate and government bonds, international equities and bonds, real
estate, hedge funds, and venture capital. Sample means, variances, and
correlations, based on monthly, quarterly, or annual historic data, may
serve as starting points for optimization input estimates! In a benchmark-
relative framework such as that shown in Exhibit 2.2, the residual return
basis for optimization inputs is the difference between asset and index
returns.

8. For example, Alexander and Francis (1986) and Jobson and Korkie (1983). Optimization with only a
budget constraint is addressed in Chapter 4.

9. See the appendix.

10. Computer algorithms that include linear constraints as in Markowitz (1956) are used to compute
practical MV optimal portfolios. See Boyd and Vandenberghe (2004) for an up-to-date review of algo-
rithms for solving convex optimization problems including Markowitz portfolio optimization.

L1. See Chapters 8 and 11 for further discussion of input estimation.
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For equity portfolio management, benchmark optimization (see
Exhibit 2.2) is generally the framework of choice. This is true because the
measure of investment performance for institutional equity management
is almost always benchmark-relative. The benchmark return is usually
related to the return of a representative market index.

An equity portfolio optimization generally includes many securities.
Domestic equity optimizations typically include 100 to 500 stocks. Interna-
tional equity optimizations may include as many as 4,000 to 10,000 stocks.
Equity portfolio optimizations usually include many constraints on portfolio
characteristics, industry or sector membership, and trading cost restrictions.

The source of equity optimization inputs is normally very different
from those in an asset allocation. Sample means and covariances of historic
returns are typically not the starting points for inputs in an equity portfolio
optimization. Modern financial theory provides a rich framework for defin-
ing expected and residual return for equities.”? In equilibrium, the expected
return of a security is a function of its systematic risk. High expected
return may indicate high systematic risk and not mispricing. The estimate
of expected return associated with systematic risk generally derives from
some version of the capital asset pricing model or arbitrage pricing theory."®

Equity risk models provide useful estimates of the components of stock
and portfolio residual risk shown in Exhibit 2.2. In practice, institutional
asset managers often use commercial risk measurement services to estimate
security and portfolio residual risk. Over- and under-pricing is associated
with o, or expected return net of systematic risk adjusted expected return.
The process of defining o for equity portfolio optimization is often a major
undertaking and may be the primary investment focus of an equity man-
agement firm. Many institutional asset managers employ stock valuation
procedures based on sophisticated econometric analysis and techniques.!*

Another common application of MV optimizers for equity portfolio
management is to define a tracking or index fund.® In this case, « is zero
and the optimizer finds the minimum risk-tracking portfolio given the
constraints. Without constraints or trading costs, the minimum tracking
fund is the index. For tracking funds, the efficient frontier in Exhibit 2.2
reduces to a point on the x-axis near or at the origin.

For equity portfolios, estimation of a and security and portfolio
residual risk, portfolio constraints, trading costs, the number of assets,
and other issues of practical importance substantially increase the

12. The two most influential modern financial theories of stock pricing are the Sharpe (1964)-Lintner
(1963) capital asset pricing model (CAPM) and the Ross (1975, 1976) arbitrage pricing theory (APT).

13. Commercial services may use a compromise version of an “expanded” or multi-beta CAPM that is
similar to an APT framework to define systematic risk.

14. For a recent example see Michaud (1999).

15. An index fund is a portfolio designed to track an index. One simple method for defining an index
fund is to include all the stocks in the index with index weights as portfolic weights. In this case, opti-
mizatien is not required. Optimizers may be useful when constraints are required or liquidity issues
are important.
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Table 2.1 Monthly Net Dollar Returns (Percentages), January 1978-December 1995

Euro us Canada  France  Germany  Japan UK us
Bonds  Bonds

Mean 0.83 0.85 0.97 146 1.11 146 1.37 129
Standard 199 1.52 547 7.00 6.19 701 599 4.28
Deviation

Note: U.S. 30-Day T-Bill Return: Mean = 0.58, Standard Deviation = 0.24.

complexity of the optimization process. In contrast, asset allocation typ-
ically reflects a much simpler and pedagogically convenient framework
for the study of MV optimization.

A GLOBAL ASSET ALLOCATION EXAMPLE

Consider a global asset manager allocating capital to the following eight
major asset classes: U.S. stocks and government/corporate bonds, Euro
bonds, and the Canadian, French, German, Japanese, and UK. equity
markets. The historic data consists of 216 months, from January 1978
through December 1995, of index total returns in US. dollars for all
eight asset classes and for U.S. 30-day T-bills, from January 1978 through
December 1995.1¢ Table 2.1 provides the averages and standard deviations
of the monthly data for the assets in this period.”

Quadratic programming finds the optimal MV efficient frontier asset
allocations under the assumptions. Exhibit 2.3 displays the efficient fron-
tier for the usual constraints.”® The graph displays annualized data.'” The
exhibit includes plots and labels of the means and standard deviations of
the eight assets.

16. The data for the five equity markets—Canada, France, Germany, Japan, United Kingdom—are
Morgan Stanley Capital International U.S. dollar total return indices net of withholding taxes. The
U.S. equity data are S&P 500 Index total returns. The 30-day T-bill returns are from Salomon Broth-
ers. The two bond data indices are the Lehman Brothers government/corporate U.S bond indices and
U.S. dollar Eurobond global indices. The Lehman Brothers Eurobend Global Index was available from
January 1978 to November 1994. The Eurobond returns for the remaining months were from Lehman
Bros. Eurobond Global [ssues Index. The limited availability of long-term Eurobend returns governed
the choice of time period used in this example.

17. These assets make up the base case used throughout this book and featured in the demo Optimizer
as the book data.

18. Computing and displaying the efficient frontier in Exhibit 2.3, and in subsequent examples of
efficient frontiers, means computing and displaying a set of points representing the mean and stan-
dard deviation of a representative set of efficient portfolios. The procedure used computes 51 efficient
portfolios, ranging from minimum variance to maximum expected return portfolios. A step function
straight-line fills in between the computed points to graphically display the efficient frontier. In gen-
eral, the points chosen are equally spaced along the return axis of the efficient frontier.

19. Twelve multiplies the average monthly returns, and the square root of 12 multiplies the monthly
return standard deviations.
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Exhibit 2.3 Classical Mean-Variance Efficient Frontier

Because the French stock market index had the highest average
monthly return, it is on the efficient frontier at the most northeast point of
the curve. The Japanese market had nearly the same return and risk, and
its plot in Exhibit 2.3 is nearly indistinguishable from that of France. The
minimum risk portfolio is more than 98% Euro bonds, with 0.86% aver-
age monthly return and 1.52% monthly standard deviation. Other points
on the efficient frontier lie between these two extremes. For example, the
efficient frontier asset allocation with average monthly return 1.24% and
standard deviation 3.33% (roughly halfway between the largest and small-
est return efficient portfolios) is composed of approximately 10% French,
20% Japanese, 5% UK, and 45% U.S. equities and 20% Euro bonds. U.S.
bonds significantly underperformed all other assets and an efficient port-
folio for its level of risk. In Exhibit 2.3, it is clear that the French, Japanese,
United Kingdom, and U.S. equity markets as well as Euro bonds are near
or on the efficient frontier and performed well relative to their level of
risk in this time period. For many levels of risk, however, diversification
was useful.

REFERENCE PORTFOLIOS AND PORTFOLIO ANALYSIS

Reference portfolios are often helpful in understanding the invest-
ment meaning of efficient frontiers. They serve as useful guideposts for
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Table 2.2 Reference Portfolio Composition (%)

Euro us Canada France Germany  Japan UK us
Bonds  Bonds

Index 0 0 5 10 10 30 10 35
Current 5 20 5 10 5 20 15 20
Equal 12.5 12.5 12.5 12.5 12.5 125 125 125

comparing the implications of alternative portfolios. Table 2.2 defines
three reference portfolios used in subsequent analyses of MV portfolio
efficiency: index, current, and equal weighted. The index portfolio is
roughly consistent with a capitalization-weighted portfolio devoid of
bonds relative to a world equity benchmark for the six equity markets.
The current portfolio represents a typical U.S.-based investor’s global
portfolio asset allocation. The most significant differences between the
index and current portfolios are the allocations to fixed income assets.
An equal-weighted portfolio is useful as a reference point.

Exhibit 2.4 provides the results of including the reference portfolios in
the efficient frontier analysis. All the reference portfolios plot close to the
efficient frontier and appear reasonably well diversified.

181 France
Japan

¢ US
- © Current

Equal-Weight & Germany
¢ Canada

¢ US bonds
Euro bonds

Annualized average return (%)
)
T

0 1 1 1 1 1
0 5 10 15 20 25

Annualized average standard deviation (%)

Exhibit 2.4 Classical Efficient Frontier with Reference Portfolios
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RETURN PREMIUM EFFICIENT FRONTIERS

The return premium is the return minus the risk-free rate. It is often con-
venient to use total return premiums, instead of total returns, as the basis
of MV analysis in practice. Return premiums are similar to real rates of
return. By removing the impact of varying risk-free rates, return pre-
miums may be relatively more stable than total returns and more useful
in a forecasting context.

The total return premium is the U.S. dollar total return minus the U.S.
dollar short-term interest rate in each period. The monthly short-term
interest rate for a U.S. dollar-based investor is usually defined as the
U. S. T-bill 30-day return. Table 2.3 displays the mean and standard
deviation of the total monthly return premiums over the January 1978 to
December 1995 period for the eight assets in Table 2.1. Table 2.4 provides
the correlations. The data in tables 2.3 and 2.4 give a complete description
of the input parameters required for MV optimization.

Exhibit 2.5 displays the MV efficient frontier associated with the his-
toric return premium data. Exhibit 2.5 and tables 2.3 and 2.4 are the basis
of most of the examples illustrated in the text.

Table 2.3 Monthly Dollar (Net) Return Premium Returns (Percentages), January
1978-December 1995

Euro USBonds Canada France Germany Japan UK us

Bonds
Mean 0.27 0.25 0.39 0.88 0.53 088 079 071
Standard 1.56 2.01 5.50 7.03 6.22 704 601 430

Deviation

Table 2.4 Asset Correlations Monthly Dollar (Net) Return Premium Returns (Percentages)
January 1978—December 1995

Euro us Canada France  Germany Japan UK us
Bonds  Bonds

Euro 1.00 0.92 0.33 0.26 0.28 0.16 029 042
Bonds

US Bonds 0.92 1.00 0.26 0.22 0.27 0.14 025 0.36
Canada 0.33 0.26 1.00 0.41 0.30 0.25 058 071
France .26 0.22 041 1.00 0.62 042 054 044
Germany 0.28 0.27 0.30 0.62 1.00 0.35 048 034
Japan 0.16 0.14 0.25 0.42 0.35 1.00 040 022
UK 0.29 0.25 0.58 0.54 048 0.40 1.00 056

us 0.42 0.36 0.71 0.44 0.34 0.22 0.56 1.00
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Exhibit 2.5 Mean-Variance Return Premium Efficient Frontier

APPENDIX: MATHEMATICAL FORMULATION OF MV EFFICIENCY

Mean-Variance Efficiency

Let:
N = number of assets or securities in the universe
w = vector of portfolio weights of the N assets
1 = vector of expected returns of the N assets
2 = covariance matrix of the N assets
1 = vector of ones of length N

By definition, the mean and variance of a portfolio I’ with weights w, is:
Hp=w, "1
2. LAY K gy
opi=w, X,

where w’ denotes the transpose of the vector w.
If portfolio P is MV efficient for a given level of portfolio expected
return p, then it satisfies the following conditions:

minimize: w,"* 2% w,
subject to the constraint: w," * p=p*

In many cases of practical interest, portfolio weights are further con-
strained to sum to 1,

w,*1=1

and to have non-negative values w = 0.
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Parametric Quadratic Programming and MV Efficiency

“Parametric” quadratic programming is a useful alternative formulation
of MV efficiency. In this case, a parameter A (lambda) is introduced into
the description of the optimization. The condition that identifies the effi-
cient portfolios is to minimize ¢ (phi):

CI) :sz_}“ Hp

for a given value of X subject to the associated linear equality and inequal-
ity constraints. This formulation of MV optimization leads to efficient
computation of the entire MV efficient frontier.?’

To show how this works, it is convenient to introduce the concept of a
“pivot point” or “corner portfolio” on the efficient frontier. Technically,
corner portfolios are efficient frontier portfolios that represent transition
points where at least one of the inequalities in the optimization either
becomes binding or is no longer binding on the solution. Less technically,
a corner portfolio is an efficient portfolio in which an asset either enters
or leaves the set of efficient portfolios in a neighborhood of the corner
portfolio.”

Corner portfolios are important for computing the efficient frontier due
to the following technical property: if w* and w** are vectors represent-
ing weights of portfolios on the efficient frontier, then a portfolio formed
from the convex sum of the two portfolios—c*w* + (1-cf*w*™, 0 <c < 1—
is also an MV efficient portfolio if no corner portfolio exists between
w* and w**. Consequently, the efficient frontier between w* and w** is
computable simply from knowing the composition of two distinct effi-
cient portfolios, when corner portfolios do not exist between them. Para-
metric quadratic procedures find the values of A associated with the
corner portfolios. It is therefore possible to compute all corner portfolios
and thereby the entire efficient frontier exactly and efficiently using para-
metric quadratic programming methods. This approach is often more
efficient than simply computing a large number of portfolios across the
length of the efficient frontier.

Parametric quadratic programming is conceptually interesting because
it provides a deeper understanding of the nature of the MV efficient fron-
tier. In many practical applications, however, computing efficient port-
folios at specific values of portfolio expected return or risk is often of
primary interest, and parametric quadratic programming of the efficient
frontier is not needed.

20. Early parametric quadratic programming methods include the critical-line algorithm of Markow-
itz {1956) and Beale {1953). For an extensive up-to-date discussion of the critical-line algorithm see
Markowitz (1987). Computational methods based on the simplex algorithm include Beale (1959), Frank
and Wolfe (1956), and Wolfe (1959). See Boyd and Vandenberghe (2004} for an up-to-date review of
algorithms for solving convex optimization problems including Markowitz portfolio optimization.

21. See Sharpe (1970) for a more leisurely exposition.
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Exact Versus Approximate MV Optimizers

In the past MV optimization algorithm design depended on tradeoffs of
computational speed versus accuracy required.?? This was particularly
true for equity portfolio optimizations for large stock universes with
many constraints. Enhancements such as Perold (1984) were valuable
for large-scale optimization problems in the presence of factor models.
However, recent developments in computational power and algorith-
mic sophistication have largely eliminated the need for approximate
optimization algorithms even for large international equity portfolios.??

22. Readers may be surprised to know that many commercial asset allocators as well as equity portfo-
lio optimizers are not exact solution algorithms. Approximate algorithms have limitations not only for
inaccurate estimation but also for finding solutions when none may exist.

23. Currently and near term, computer laptop technology features multi-core processors that allow
extremely fast optimization for even large problems.



Traditional Criticisms and Alternatives

Many authors have raised objections to mean-variance (MV) efficiency
as a framework for defining portfolio optimality. Most of the alternatives
can be classified in one of five categories: (1) alternative risk measures;
(2) utility function optimization; (3) multiperiod objectives; (4) Monte
Carlo financial planning; and (5) linear programming. Analysis shows
that the alternatives often have their own serious limitations and that
MYV efficiency is far more robust than is commonly appreciated. Although
they are symptomatic of an underlying unease with MV efficiency, none
of the proposals address the basic limitations of MV optimization.

ALTERNATIVE MEASURES OF RISK

In MV efficiency, the variance, or standard deviation, of return is the
measure of security and portfolio risk. The variance measures variability
above and below the mean. From an investor’s point of view, the vari-
ance of returns above the mean is often not viewed as “risk”. One obvi-
ous and intuitively appealing nonvariance measure of risk, discussed as
early as Markowitz (1959), is the semivariance or semistandard deviation
of return. In this risk measure, only returns below the mean are included
in the estimate of variability.

The semivariance is an example of a “downside” risk measure. In this
case, “downside” risk is relative to the average or mean of return. There
are many other ways to measure “downside” risk. A simple example is
replacing average return with a specified level of return, such as zero or
the risk-free rate.

20
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Many other nonvariance measures of variability are also available.
Some of the more important include the mean absolute deviation and
range measures. The pros and cons of various risk measures depend on
the nature of the return distribution.

The return distribution of an asset or portfolio depends on several fac-
tors. Because the returns of diversified equity portfolios, equity indexes,
and other assets are often approximately symmetric over periods of insti-
tutional interest, efficiency based on nonvariance risk measures may be
nearly equivalent to MV efficiency.

An important issue is whether, in practice, nonvariance risk measures
lead to significantly different efficient portfolios. Exhibit 3.1 provides an
illustration, comparing the MV efficient frontier in Exhibit 2.5 with a
mean-semivariance efficient frontier based on the same historic data. As
Exhibit 3.1 shows, the two efficient frontiers are virtually identical, except
in the middle. The differences in the middle reflect the fact that some
equity indices have asymmetrically less downside risk. Many currently
fashionable risk alternatives have similar efficient frontier characteristics.

Some securities, such as options, swaps, hedge funds, and private
equity, have return distributions that are unlikely to be symmetric. The
return distributions of fixed-income and real estate indices are generally
less symmetric than equity indices. In addition, the return distribution of
diversified equity portfolios becomes increasingly asymmetric over long
time horizons. Consequently, the variance measure for defining portfolio
efficiency is not always useful or appropriate. For many applications of
institutional interest, however, a variance-based efficient frontier is often
little different (and even less often statistically significantly different)
from frontiers that use other measures of risk.!
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Exhibit 3.1 MV and Semi-Variance Return Premium Efficient Frontiers

1. We turn to measures of statistically significant difference in Chapter 7.
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A word of caution: alternative risk measures are often more difficult to
estimate accurately. Analysts must weigh the trade-off between estima-
tion error and a more conceptually appealing measure of risk.

Most importantly, the appropriate risk measure is not one based on
historic return distributions but on how an investor understands the risk
that will be borne in the investment period. As a forecast, many distri-
bution parameters are realistically unanticipatable in direction as well as
magnitude relative to the level of uncertainty associated with investment.
Consequently, as a measure of future risk, the variance is often perfectly
adequate to represent investor risk perceptions even for highly asymmet-
ric return indices and assets.

UTILITY FUNCTION OPTIMIZATION

For many practicing financial economists, maximum expected utility
of terminal wealth is the framework of choice for all rational decision
making under uncertainty. If Markowitz MV efficiency is not consistent
with expected utility maximization, perhaps it should be abandoned and
replaced with utility function optimization.

Markowitz MV efficiency is strictly consistent with expected utility
maximization only under either of two conditions: normally distributed
asset returns or quadratic utility. The normal distribution assumption is
unacceptable as a realistic hypothesis. Although diversified equity port-
folio and capital market index returns are often reasonably symmetric,
their distribution is not normal? In addition, the limitations of quad-
ratic utility as a representation of investor behavior are well known and
unacceptable.* Consequently, MV efficiency is not strictly consistent with
expected utility maximization.

On the other hand, there are significant practical limitations to using
utility functions as the basis of defining an optimization. One obvious
limitation is the feasibility and viability of practical algorithms for com-
puting optimal portfolios. Depending on functional form, nonlinear opti-
mization methods may be required that may have significant limitations
in many applications.

An equally important limitation of the utility function approach to
portfolio optimization is utility function specificity. In practice, investor
utility is unknown. The lack of specificity of the investor’s utility func-
tion is a far more daunting practical problem than it may appear. This

2. Returns are neither strictly normal nor log-normal. Returns are not normal due to limited liability.
Returns are not log-normal due to the possibility of default. Financial history includes many extended
time periods when even country capital markets stopped functioning.

3. Because a quadratic function is not monotone increasing as a function of wealth, from some point
on, expected quadratic utility declines as a function of increasing wealth. Quadratic utility functions
are primarily useful as approximations of expected utility maximization in some region of the wealth
spectrum.
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is because a class of utility functions can have similar functional forms,
perhaps differing in the value of only one or two parameters, yet represent
a very wide, even contradictory, spectrum of risk bearing and investment
behavior (Rubinstein, 1973). In these cases, even small errors in the esti-
mation of utility function parameters can lead to very large changes in
the investment characteristics of an optimal portfolio. As a practical mat-
ter, the problem of specifying with sufficient accuracy the appropriate
utility function for a given investor appears to be a severe practical limi-
tation of utility function-based portfolio optimization.

The practical resolution is to consider Markowitz MV efficiency as a
convenient approximation of expected utility maximization. A quadratic
utility is often a useful approximation of maximum expected utility at a
point for almost any reasonable utility function and return-generating
process in practice.! Note that the best-approximating quadratic function
is simply some two-moment approximation of maximum expected utility
that is a function of utility parameters. Consequently, MV efficient port-
folios are often good approximations of maximum expected utility and a
practical framework for portfolio optimization (Kroll, Levy, & Markowitz
1984; Levy & Markowitz, 1979; Markowitz, 1987, chapter 3).

The use of utility functions in defining portfolio optimality often
divides practitioners from academics. From a rigorous academic point of
view, only the specification of an appropriate utility function will do for
defining portfolio optimality. However, few practitioners use nonquad-
ratic utility functions to find optimal portfolios. Given the difficulty of
estimating utility functions with sufficient precision, the convenience of
quadratic programming algorithms, and the robustness of the approxi-
mating power of quadratic utility at a point, MV efficiency is often the
practical tool of choice.

MULTIPERIOD INVESTMENT HORIZONS

Markowitz MV efficiency is formally a single-period model for invest-
ment behavior. Many institutional investors, however, such as endow-
ment and pension funds, have long-term investment horizons on the
order of 5, 10, or 20 years. How useful is MV efficiency for investors with
long-term investment objectives?

One way to address long-term objectives is to base MV efficiency ana-
lysis on long-term units of time. MV efficiency, however, is probably
most appropriate for relatively short-term periods. This is true because
a quadratic approximation of maximum expected utility is most likely
to be valid for relatively short time horizons such as monthly, quarterly,
or yearly periods. In addition, lengthening the unit of time reduces the
number of independent periods in a historic data set and the statistical

4. The result is Taylor’s theorem for a continuous and sufficiently smooth utility function.
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significance of optimization parameter estimates. On the other hand,
increasing the historic data period may diminish the relevance of the
estimates for the forecast period.

An alternative approach is to consider the multiperiod distribution of
the geometric mean of return. The geometric mean, or compound, return
is the statistic of choice for summarizing portfolio return over multiple
periods.®

Assume that, in each period, MV efficiency defines optimal portfolio
choice. Also assume that the distribution of single-period return does
not vary (appreciably) over the multiperiod investment horizon. What
are the long-term consequences of repeatedly investing in MV efficient
portfolios?

Some essential results are due to Markowitz (1959, chapter 6). He shows
that (1) MV efficient portfolios need not be efficient in the long run and
(2) long-term efficiency is not necessarily monotonic in portfolio risk. In
particular, MV efficient portfolios on the upper segment of the efficient
frontier may be less efficient in the long term than portfolios with less
risk.s

Hakansson (1971a) gives an example of an MV efficient frontier in
which repeated investing produces a negative long-term geometric mean
at all points. This example demonstrates that every portfolio on an MV
efficient frontier may lead to ruin with probability 1 over a sufficiently
long investment horizon. However, the Hakansson frontier is neither
typical nor likely.

Further analysis of the geometric mean criterion is useful” The mean
and variance of N-period geometric mean return is a natural N-period
generalization of Markowitz efficiency.® Various approximations show
that portfolios on the (single-period) MV efficient frontier are often good
approximations of N-period geometric mean efficient portfolios? Con-
sequently, N-period geometric mean MV efficiency is roughly a special
case of MV efficiency in many cases of practical interest.

Define the critical point as the MV efficient portfolio with the max-
imum N-period expected geometric mean return. The critical point is a
useful construct for understanding and using N-period geometric mean
efficiency. The N-period expected geometric mean is a positive function of

5. Suppose an investor experiences a 100% return in one period and a —50% return in the next period.
The two-period average return is 23%, but the two-period wealth is the same as at the beginning.
Therefore, the true multiperiod return is 0%. The geometric mean provides the correct answer, while
the average does not.

6. Markowitz's use of the phrases “return in the long-run” and “long-term return” refer to the almost
sure limit of geometric mean return as the number of periods becomes large.

7. Much of the following discussion follows Michaud {1981, 2003).

8. It may be fitting to call the objective Hakansson efficiency, after the researcher who has done much
of the pioneering work in this area.

9. For example, Young and Trent (1969) and Michaud (1981, appendix). Approximation accuracy
depends on assumptions that are often satisfied in practical applications.
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the mean of (single-period) expected return and a negative function of
the variance. Consequently, the critical point defines the boundary
of portfolios on the lower segment of the MV efficient frontier that are
N-period geometric mean MV efficient and those on the upper segment
that are not. N-period horizon MV efficiency leads to the simple decision
rule of considering only MV efficient portfolios on the lower segment of
the efficient frontier up to the critical point efficient portfolio.® Note that
critical points that are not end points of the MV efficient frontier do not
always exist.

A number of analysts have raised objections to the geometric mean as
an investment criterion. In particular, a significant controversy emerged
from the proposal of using the (long-term) expected geometric mean as
a surrogate for expected utility (Hakansson, 1971b). This controversy,
although it is beyond the scope of this discussion, is essentially concerned
with the limitations of using any investment rule, however attractive, as
an alternative to expected utility maximization. The opposing view con-
cerns the limitations of using utility functions in practice and the value of
the MV geometric mean criterion as a convenient source of useful invest-
ment information.! MV geometric mean investment objectives are often
consistent with many institutional investment mandates.

One more issue may be of interest. The assumption has been that the
investor repeatedly invests in the same efficient frontier portfolio over
some investment horizon. However, optimal multiperiod investment
with a MV geometric mean objective is a dynamic programming strategy
that implies varying the choices of MV efficient portfolios in each period
{(Michaud & Monahan, 1981).

Multiperiod considerations are important issues for investors with
long-term investment objectives. To avoid possible negative long-term
consequences of MV efficiency, a simple solution is to limit consideration
to efficient frontier portfolios at or below the critical point. As a useful
approximation, it is convenient to consider long-term efficient portfolios
as a subset and a special case of MV efficiency.

ASSET-LIABILITY FINANCIAL PLANNING STUDIES

Many financial institutions invest substantial resources in defining an
appropriate long-term average asset allocation or investment policy.”?
They do this because the long-term average asset allocation is one of
the most important investment decisions an institution or investor can

10. One simple procedure is to find the MV efficient portfolio with the maximum value of an MV
approximation to the N-period geometric mean using a search algorithm of all portfolios on the effi-
cient frontier. Michaud (1981) provides three analytic formulas for estimating the efficient frontier crit-
ical point for the special case of portfolios on the capital asset pricing model (CAPM) market line.

1L. See Markowitz (1976), Michaud (1981, 2003) for further discussion and many additional references.
12. Such projects can involve a number of consultants and substantial expenditures.
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make.”® The importance of defining an optimal investment policy has
spurred alternative approaches to defining portfolio optimality. Probably
the most important is asset-liability financial planning based on Monte
Carlo simulation of portfolio return and changing liabilities.

In a Monte Carlo financial planning study, a computer model simu-
lates the random functioning of fund values and changes in liabilities
over time! Performing many Monte Carlo simulations results in esti-
mates of possible cash flows and funding status over time. By varying
asset return and asset allocation assumptions, the simulation can evalu-
ate the implications of risk policy decisions on the evolution of funding
status and cash flows. Endowment fund simulations can provide useful
information on likely levels of endowment spending and fund value over
time. Similarly, defined benefit pension plan simulations can be useful
for anticipating required contributions and plan funding status for vari-
ous assumptions and investment periods.!®

The issue of interest is whether Monte Carlo asset-liability financial
planning is a superior alternative to MV efficiency for defining an opti-
mal asset allocation. Proponents argue that plan funding status and cash
flow objectives are more meaningful than the MV efficiency of a feasible
portfolio. The anticipation of likely cash flows and required contributions
can provide valuable fund planning information. The problem is that
such information may have relatively limited usefulness for defining an
optimal long-term asset allocation.

Generally, only feasible MV efficient frontier asset allocations are likely
to be of investment interest. This is because feasible allocations with
more expected return for a given risk level are almost always preferable.
Consequently, a valid Monte Carlo asset-liability simulation study gen-
erally requires MV efficiency analysis to determine candidate efficient
allocations. Within the context of feasible efficient allocations, consider
the consequences of varying asset mixes. In general, the Monte Carlo
results show that riskier efficient asset mixes lead to a greater likelihood
of meeting or exceeding funding objectives and of increasing volatility.
Evaluating the trade-offs associated with funding status and cash flow
volatility in various time periods is often of no less difficulty than evalu-
ating the risk-return tradeoffs in an efficient frontier context. Monte Carlo

13. Brinson et al. {1986, 1991) have shown that the average risk level or long-term investment policy of
the fund may account for more than 90% of investment results for long-term investors. Hensel et al.
(1991) use a different definition of investment policy and find that it is roughly comparable to active
asset allocation and active stock selection. At a minimum, most analysts agree that investment policy
is at least as important as any other class of investment decisions.

14. Depending on the study and application, the liability model may be very detailed. For a defined
benefit plan, it can include a comprehensive examination of corporate objectives, economic projections,
and future hiring policy as well as current workforce census. In some cases, liability modeling may
affect asset allocation decisions in terms of feasibility, particularly for regulated firms such as insur-
ance companies.

15. Michaud (1976) provides a detailed example of the Monte Carlo financial planning process for
defined benefit pension plans.
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simulation studies do little more than illustrate the principle that, for
feasible efficient portfolios, more risk leads to more return on average and
more volatility, leaving the investor to choose what is most appropriate.

There is an exception to these basic principles governing Monte
Carlo asset-liability financial planning simulation. Analysts have seen
that increasing efficient portfolio risk does not always lead to increased
average return. Such results appear to rationalize the importance of the
Monte Carlo procedure relative to MV efficiency analysis. However, the
discussion in the previous section can help to explain this result.

Monte Carlo simulation studies generally assume repeated investment
in MV efficient frontier portfolios. If an efficient frontier has an internal
critical point, efficient asset allocations on the long-term inefficient seg-
ment of the efficient frontier will exhibit the behavior that increasing risk
leads to decreases in the ability of the fund to meet objectives. In many
cases, such results can be anticipated analytically by computing the crit-
ical point of the efficient frontier and analyzing N-period geometric mean
efficiency. However, the issue is more than simply a tool for rationalizing
the results of a simulation study. The N-period geometric mean implica-
tions of asset return assumptions are the engine that drives the simula-
tions and can lead to predefined conclusions.

Monte Carlo asset-liability simulation has many uses as a tool for
financial planning. It is useful for understanding the likelihood of meet-
ing funding objectives and likely cash flows associated with various fund
investments and allocations. The procedure has limited value, however,
as an alternative to MV efficiency for defining an optimal asset alloca-
tion. Many of its asset allocation benefits are analytically anticipatable
in terms of the mean and variance of the multiperiod geometric mean
distribution. On the other hand, the analytic tools for understanding
the geometric mean distribution as a function of the MV efficient fron-
tier portfolios over an N-period investment horizoen can be useful for
designing effective Monte Carlo simulation financial planning studies
(Michaud, 1981, 2003}.

LINEAR PROGRAMMING OPTIMIZATION

The limitations of MV optimization as a practical tool of equity port-
folio management have been familiar to many astute asset managers
for many years. One alternative is to optimize portfolios with linear
programming.'®

Linear programming portfolic optimization is a special case of quad-
ratic programming, The most significant difference is that linear program-
ming does not include portfolio variance. In this procedure, the objective is
to maximize expected equity portfolio return subject to a variety of linear

16. See for example Farrell (1983, pp. 168-174).
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equality and inequality constraints on portfolio structure. The procedure
relies on clever use of constraints on industries, sectors, and stock weights
to control portfolio risk and maximize expected return. The constraints
also serve to design portfolios with various specific characteristics and
objectives.

In the hands of a sophisticated analyst, linear programming is an opti-
mization technique that may avoid some of the fundamental limitations
of equity portfolio MV optimization. It has its own limitations, however.
In practice, it is difficult to control the structure of a portfolio precisely.
From a theoretical point of view, only an MV optimization framework
can optimally use active forecast information (Sharpe, 1985). Given the
current state of the art in optimization, linear programming cant be
recommended. The problems of ambiguity and instability characteris-
tic of MV optimization are well addressed in the statistical optimization
framework that is a primary subject of this text.

A somewhat obvious final issue may be worthy of note. A number of
investment institutions use surprisingly unsophisticated optimization
procedures. These “homemade” optimization alternatives are often not
the product of a conscious effort to avoid MV optimizer limitations but
reflect a lack of analytical sophistication in the organization. Technical
limitations in an optimization algorithm are unlikely to enhance the
investment value of a portfolio over standard procedures.



Unbounded MV Portfolio Efficiency

Theoretical academic and practitioner research on MV optimization
typically assumes an unbounded asset weight framework.! In this con-
text a budget or asset sum-to-one constraint is all that is assumed, and
uncertainty in risk-return estimates is ignored. The benefit of this frame-
work is that MV optimization can be solved using analytical methods.?
Elegant mathematical solutions and simple formulas are available for
many questions of interest. The unbounded MV optimization frame-
work has useful pedagogical applications. However, in investment
practice, risk-return estimates are highly uncertain. As will be shown,
avoiding the investment consequences of data uncertainty in unbounded
MV optimization comes at the high price of irrelevant and/or mislead-
ing conclusions.® This chapter focuses on the fundamental limitations of
unbounded MV efficiency for practical investment management when
estimate uncertainty is considered and provides a context for many of
the tools that follow.

1. A number of academic examples are reviewed in DeMiguel et al. (2006). Additional examples of
theoretical MV optimization in the unbounded MV optimization framework include Black and Litter-
man (1992), Grinold (1989), Knight and Satchell (2006), and Clarke et al. (2002).

2. Portfolio optimization based on expected utility maximization ignoring uncertainty in data typi-
cally represents a similar class of problems with similar consequences for out-of-sample performance.
3. It is beyond the scope of the text to address the practical limitations of expected utility-based port-
folio optimization without estimate uncertainty due to the wide range of possible utility functions
considered in theoretical finance. Nevertheless, we note that the practical limitations are very similar
to those we describe for MV optimization.

29
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UNBOUNDED MV OPTIMIZATION

The formula for the optimal portfolio for unbounded MV optimization is:

x=3"n/1 ) (4.1)
where
z is the covariance matrix.
X1 is the inverse covariance matrix.
T is the column vector of estimated returns.
X is the column vector of optimal portfolio weights.
1 represents a column vector of ones with length equal to

the number of assets.

Formula 4.1 for the optimal portfolio weights is easily solved with
modern computer technology.* The optimal portfolio found from the
formula is the maximum Sharpe ratio (return/risk) portfolio. It is also
convenient to compute the minimum variance portfolio.® For the data in
Chapter 2, Tables 2.3 and 2.4, Table 4.1 displays the solutions for the opti-
mal asset weights. The Sharpe ratio for the maximum Sharpe ratio port-
folio is 0.253 monthly or 0.876 annualized.®

Exhibit 4.1 describes the efficient set of risky unbounded MV effi-
cient portfolios. All the portfolios on the MV efficient frontier are linear
combinations of the maximum Sharpe ratio portfolio and the minimum
variance efficient portfolios.” The display indicates the positions of the
maximum Sharpe ratio, minimum variance, and equal weighted port-
folios. Since there are no limitations on leverage or lending in the opti-
mization, the set of portfolios on the unbounded efficient frontier may
extend below the minimum variance portfolio and beyond the maximum
Sharpe ratio portfolic.?

The optimal asset allocations in Table 4.1 may surprise readers unfamiliar
with unbounded MV optimization. Large negative (short) and positive
(more than 100% leveraged) positions typically characterize unbounded

Table 4.1 Optimal Unbounded MV Portfolio: Chapter 2 Data (Annualized) Percentages

Portfolio us Euro Canada France Germany Japan UK US
Bonds Bonds

Max Sharpe —86.5 163.8 —20.6 4.2 —45 8.6 6.9 281

Ratio

Min Variance  —¢6.2 1688 —1.1 —1.3 0.2 1.8 01 —23

4. The covariance matrix is assumed positive semi-definite.

. The minimum variance portfolio is computed from i 1/(1 b 1) subject to the budget constraint.

. Note that the Sharpe ratios reported in Michaud (1998, p. 35) are monthly.

. Any two portfolios on the efficient frontier will allow tracing of the efficient frontier.

8. In an investment sense the portfolios below the minimum variance portfolio are not MV efficient but
are nevertheless interestingly related to the efficient portfolios.

N o
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Exhibit 4.1 Unbounded MV Efficient Frontier (Chapter 2 Data)

MV optimization. The large negative and positive optimal portfolio
weights are often impractical investments for even the largest financial
institutions.

In the unbounded MV framework, essentially only one portfolio is
of investment interest: the maximum Sharpe ratio portfolio. If a riskless
asset exists, the efficient set consists of borrowing or lending the max
Sharpe ratio portfolio at the riskless asset rate*

THE FUNDAMENTAL LIMITATIONS OF UNBOUNDED MV EFFICIENCY

Optimizers are numerical algorithms that are insensitive to uncertainty
in risk-return estimates. Modern computers assume numerical accuracy
to 16 decimal places.® A return estimate of 10% is represented internally
by the computer with 15 following zeros after the decimal point. Sixteen
decimal places of accuracy is an absurdly unrealistic level of certainty for
most investment information. Unfortunately, MV optimization is highly
sensitive to even small changes in risk and return estimates. Anecdotally,
investment practitioners are well aware of the instability of MV optimized
portfolios. The operative question is not whether MV optimizations are
unstable, unintuitive, ambiguous, and poorly performing but rather, how
serious is the problem? In most cases, the problem is very serious indeed.

9. Markowitz (2005} shows that removing the assumption that the leveraging and lending rates are
equal has important theoretical implications for market equilibrium.

10. The IEEE 754 digital computer standard implies data storage of essentially 10 single- or 16 double-
precision decimals of floating point data. The authors use double-precision software for computation.
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J.D. Jobson and Bob Korkie wrote the classic pioneering studies on the
limitations of unbounded MV optimized portfolios. Jobson and Korkie (1930)
made analytic estimates of the biases produced by MV optimizers when infor-
mation is uncertain. They found that the biases in MV optimized portfolios
can be very large. Jobson and Korkie (1981) used Monte Carlo resampling tech-
niques to simulate the behavior of an unbounded MV optimizer." For a given
set of historic return data for 20 stocks and a 60-month estimation period, they
found that the simulated MV efficient frontiers had an average maximum
Sharpe ratio of 0.08 This result contrasts with the true Sharpe ratio for the
data (0.32) and the Sharpe ratio of an equal-weighted portfolio (0.27). The Job-
son and Korkie results put to rest the fallacy that MV optimized portfolios are
somehow better than others even though they are difficult to understand. MV
optimized portfolios are hard to understand because they often do not make
investment sense and do not have any useful investment value!®

REPEATING JOBSON AND KORKIE

To provide a baseline for the results that follow, it is useful to repeat
the Jobson and Korkie experiment for the data in Tables 2.3 and 2.4.1415

11. The Jobson and Korkie Monte Carlo simulation experiment is an example of data resampling or
bootstrapping. Data resampling and bootstrapping methods have become increasingly important in
modern statistics. Judge et al. (1988, pp. 416-419) provide an overview and Efron and Tibshirani (1993)
a comprehensive authoritative description. One important reason that simulation is so useful is that
it represents an out-of-sample test of the investment performance of MV optimized portfolios for the
data and optimization assumptions. Alternative methods generally have to deal with the additional
issue of changes in the underlying return distribution

12. Jobson and Korkie’s (1981) Monte Carle simulation procedure is as follows. A set of means, standard
deviations, and correlations of monthly returns for 20 stocks, estimated over some historic period, is
assumed to be the true state of nature. Monte Carlo simulations of the historic data simulate 60- or
100-month returns for each asset. From the simulated returns, compute the simulated optimization
inputs—means, standard deviations, and correlations of the 20 stocks—and associated efficient fron-
tier maximum Sharpe ratio portfolios. Repeat this procedure many times. Because the simulated data
have statistical error, each simulated efficient frontier is unlikely to be the true efficient frontier, and
the estimated maximum Sharpe ratio portfolio varies with each simulation. Now compare the average
Sharpe ratio for the simulated maximum Sharpe ratio portfolios to the actual maximum Sharpe ratio
and the Sharpe ratio of an equal-weighted portfolio for the historic data.

13. Jobson and Korkie are not alone in noting the lack of investment value of unbounded MV optimiza-
tion in practice. DeMiguel et al. (2006) test the performance of 14 models in the context of unbounded
MV optimization and estimation error and find, as in Jobson and Korkie, that none are reliable
improvements over equal weighting.

14. Jobson and Korkie (1981) use the following formula for computing the simulated maximum Sharpe
ratio portfolios: smean*inv(scov), where smean is the row vector for the Monte Carlo simulated means
and inv(scov) is the inverse of the simulated covariance matrix. The reward-to-risk ratio using the
means and covariances of tables 2.3 and 2.4 is the measure of the performance of the simulated Sharpe
ratio optimal portfolios. The simulated portfolios in this case are not short-selling-constrained. The
simulated portfolios produced by the formula are unlikely to satisfy the budget constraint. Dividing
the portfolio weights by their sum normalizes the portfolio so that it satisfies the budget constraint.
However, the reward-to-risk ratio before and after normalization may be different if the sum of the
weights is negative. The alternative used here is to ignore simulated portfolios when the sum of the
weights is negative.

15. The simulated returns are multivariate normally distributed. The algorithm used in the results
reported is mvnrnd.m from MathWorks. Tests using nonparametric (bootstrapping) and parametric
(multivariate normal) resampling found results that were essentially the same.
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As noted earlier, the true maximum (monthly) Sharpe ratio for our data is
0.253. Replicating the 216-month historical estimation period of the data,
the average of the Sharpe ratios for 500 simulations of the eight-asset data
is 0.200." This value is 20% less than the true value.

Jobson and Korkie use 100- and 60-month estimation periods. Repli-
cating Jobson and Korkie with 500 simulations and the eight-asset data,
the average Sharpe ratio for 100 estimation periods is 0157 and for 60
periods is 0.128.7 The results show that shorter estimation periods have a
significant impact on increasing estimation error and reducing the aver-
age performance of optimized portfolios, all other things being the same.
There are three reasons why our simulations find less serious negative
results for average out-of-sample investment performance: (1) lower vari-
ance diversified asset classes; (2) longer historic estimation period; and
(3) smaller number of assets in the optimization universe.

IMPLICATIONS OF JOBSON AND KORKIE ANALYSIS

The results of the Jobson and Korkie studies should be sobering for invest-
ors. This is because the Jobson and Korkie simulation framework meas-
ures best, not worst, cases for MV portfolio optimization performance.
Each simulated efficient frontier uses risk and return estimates that stat-
istically represent the truth. In addition, the underlying return generat-
ing process is assumed to be stationary in the Jobson and Korkie tests. In
practice, asset managers have no idea if their estimates represent, even
approximately, an investment truth about the future. As importantly, the
return generating process is not stationary in practice but varies over
time. Neither of these additional sources of investment error are included
in the Jobson and Korkie framework. These Jobson and Korkie “best
case” results provide little, if any, comfort that unbounded MV optimiza-
tion is useful in investment practice. As we will show, the lure of elegant
analytical solutions promised by unbounded MV optimization will often
lead to irrelevant and misleading conclusions.

MYV optimization is an error-prone framework. The unrealistic level of
estimate accuracy assumed by the computer in an MV optimization typ-
ically leads to investment irrelevant solutions unless highly constrained.
In-sample utility function optimization studies that do not consider esti-
mation error and out-of-sample performance have similar character and

16. The distribution of the reward-to-risk ratios of the simulated portfolios is of investment interest.
The 5th percentile maximum Sharpe ratio is 0.138, the 95th percentile is 0.238, the minimum value is
0.088, and the maximum value is 0.248. The Sharpe ratios have a skew value of -1.08, indicating that
when error maximization negatively affects the optimized portfolio, the effect may be very serious.
The relatively large skew value is a function of the small number of assets in the example. Larger
numbers of assets lead to less skew in the distribution of the maximum Sharpe ratios, all other things
being equal.

17. The reported numbers are an average of the results of four 500 resampled simulations. There was
negligible variance in the estimates.
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practical investment limitations.”® Out-of-sample performance simulation
studies, as pioneered by Jobson and Korkie, offer a reliable route to under-
standing the investment value of portfolio optimization procedures.
Some limitations of Jobson and Korkie’s results for institutional asset
management should be noted. Optimized institutional portfolios gener-
ally include bounds on asset weights. For example, optimized portfolios
are typically sign constrained. As demonstrated in the next chapter,
sign constraints may significantly enhance the performance of MV opti-
mized portfolios. Typical institutional portfolio optimization practices
may moderate, but do not invalidate, the Jobson and Korkie results. Job-
son and Korkie’s results indicate the importance of imposing financially
meaningful constraints on the optimization process when available.”

STATISTICAL MV EFFICIENCY AND IMPLICATIONS®

The pioneering studies of Jobson and Korkie demonstrate that unbounded
MV optimization has essentially no practical investment value. Yet many
authors, attracted by the elegance of analytical results, persist in ignoring
estimation error and use the unbounded MV optimization framework
for deriving investment laws? and rules of asset management® and rec-
ommend procedures for defining optimality.? However, estimation error
severely limits any practical investment value that can be derived from
unbounded MV optimization analysis. Conclusions derived from ana-
lytical solutions are likely to be unreliable or misleading.

Effective portfolio optimization needs to consider uncertainty in
investment information. The importance of estimation error in asset
management practice is far more important than has been appreciated by
much of the investment community. Ignoring the statistical nature of MV
efficiency leads to counterproductive and suboptimal investment prac-
tices. On the other hand, recognition of the statistical character of MV
optimization can lead to procedures that allow significant improvement
of performance and tools for asset management.

18. An example of a utility function study relative to portfolio optimization is Chopra and Ziemba
(1993). They claim that estimation error is more important in the return than the variance or correla-
tion dimension. The framework they use is the effect of estimation error on in-sample expected util-
ity rather than out-of-sample performance. The results in Chapter 6 demonstrate the fallacy of their
conclusion and the importance of dealing with estimation error in both risk and return for defining
investment-effective optimized portfolios in practice.

19. This is the recommendation in Frost and Savarino (1988).

20. One of the earliest mentions of the efficient frontier as a sample statistic isin Roll (1979).

21. Grinold (1989}

22. Grinold and Kahn (1994, Ch. 6), Clarke et al. (2002, 2006)

23. Black and Litterman (1992), Knight and Satchell (2006)

24. Michaud and Michaud (2005b)



Linear Constrained MV Efficiency

Chapter 4 addressed unbounded MV optimization. Elegant analytical
solutions are available in this case. In investment practice, however, MV
optimized portfolios include linear (inequality and equality) constrained
asset weights. Linear constrained, not unbounded, MV optimization is
typically the framework of choice for asset management in practice. Lin-
ear inequality constraints reflect the fact that asset managers have prac-
tical limits to shorting and leverage of investments.

When linear inequality constraints are included, the analytical methods
associated with unbounded MV optimization are unavailable; compu-
tational methods are the only feasible solution. Markowitz (1956) recog-
nized the importance of this distinction and provided a computational
algorithm for solving linear constrained MV optimized portfolios. In this
and following chapters we pursue the implications of estimation error
for the practical investment framework of linear constrained MV port-
folio efficiency.

LINEAR CONSTRAINTS

In practice, portfolio optimizations typically include many linear inequal-
ity and equality constraints. In particular, the plethora of constraints that
typifies institutional MV equity portfolio optimization in much practice
is often so extreme as to all but define the “optimal” portfolio. The sim-
plest nontrivial linear constrained MV optimization of interest includes
a budget and nonnegative inequality constraints on assets. The efficient
frontier in Exhibit 2.5, using data from tables 2.3 and 2.4, assumes sign

35



36 Efficient Asset Management

constraints on assets and the sum-to-one budget constraint. This is our
base case in the text.!

It is of interest to compare the characteristics of the linear constrained
MYV efficient frontier to the unbounded case. Table 5.1 displays the opti-
mal maximum Sharpe ratio and minimum variance portfolios for the
Exhibit 2.5 efficient frontier base case. The max Sharpe ratio for the lin-
ear constrained MV efficient frontier is 0.216 monthly (0.75 annualized)
as compared to 0.253 monthly (0.876 annualized) for the unbounded case.
Comparing the optimized portfolios in Table 5.1 relative to Table 4.1 high-
lights the differences between the inequality constrained and uncon-
strained optimized solutions.

From a conceptual point of view, imposing constraints on an opti-
mization may seem arbitrary and counterproductive. Constraints reduce
in-sample return and/or risk of portfolios on the efficient frontier. How-
ever, it would be hard to rationalize why asset managers consistently
use constraints in constructing portfolios that are likely to be counter-
productive. Intuitively, managers use constraints to improve risk-return
efficiency in the investment period, not reduce it.

The paradox of the presence of many optimization constraints in
investment practice is easily reconciled when estimation error is con-
sidered. An unconstrained MV optimization significantly overweights
(underweights) those securities that have large (small) estimated returns,
negative (positive) correlations, and small (large) variances. These secur-
ities are, of course, the ones most likely to have large estimation errors.
The error maximization effect creates unintuitive extreme allocation MV
optimized portfolios.? The MV optimizer overuses information avail-
able in investment data. Constraints reduce the ability of MV optimizers
to misuse extreme information. Indeed, Frost and Savarino (1988) show
that the performance of sign-constrained MV optimized portfolios is
enhanced on average. Chapter 6 further addresses performance issues.

Table 5.1 Optimal Linear Constrained MV Portfolio: Base Case (Annualized)

Portfolio us Euro Canada France Germany Japan UK us
Bonds Bonds

Max Sharpe 0.0% 67.8% 0.0% 2.6% 0.0% 97% 1.7% 18.2%
Ratio
Min Variance 0.0% 98.7% 0.0% 0.0% 0.0% 13% 0.0% 0.0%

L. This is the efficient frontier displayed in Exhibit 2.5.

2. It is not always easy to see the unintuitive investment character of MV optimized portfolios in equity
portfolio optimizations due to the typically large number of securities in the optimization universe.
However, classical MV optimized asset allocations that typically include a relatively small number
of assets and are not severely constrained are usually found to be inconsistent with the investment
intuition of experienced investors.
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EFFICIENT FRONTIER VARIANCE

Does the efficient frontier have a variance?® At first blush the question
may seem frivolous: How can curves have a variance? On reflection, how-
ever, the question is less obviously frivolous. An MV efficient frontier is
based on statistically estimated parameters. Because different estimates
may be statistically equivalent, the MV efficient frontier must have a vari-
ance. The operative question is how to estimate the variance. Analyti-
cal solutions are available for the variance of an unbounded MV efficient
frontier (Jobson, 1991).

To estimate the variance of a linear constrained MV efficient frontier,
use the Jobson and Korkie resampling procedure to compute “statistically
equivalent” frontiers from optimization inputs. The collection of resa-
mpled statistically equivalent efficient frontiers demonstrates the vari-
ability implicit in efficient frontier estimation. For the efficient frontier in
Exhibit 2.5, the data resampling simulation proceeds as follows:

1. Monte Carlo simulate 18 years of monthly returns based on the
data in Tables 2.3 and 2.4 for the eight asset classes.

2. Compute optimization input parameters from the simulated
return data.

3. Compute efficient frontier portfolios that satisfy the same con-
straints as those in Exhibit 2.52

4. Repeat steps 1 through 3 a large number of times.® By definition,
each simulated efficient frontier is statistically equivalent to the
efficient frontier in Exhibit 2.5.

Exhibit 5.1 displays the original Exhibit 2.5 efficient frontier in solid
black and 25 gray statistically equivalent efficient frontiers.®

The character of the simulated efficient frontiers in Exhibit 5.1 may
surprise many. The simulations clearly show that estimation error in both
the risk and return dimensions strongly affects MV optimality ambigu-
ity. Note the range of risk displayed in the simulated efficient frontiers.
Some resampled efficient frontiers extend only half the range of risk
of the original frontier, while others have substantially more risk. Less
surprising, perhaps, is the very wide range of return observed in the
resampled frontiers. While the original frontier returns range from 3%
to 11%, the simulated efficient frontier returns range from 0% to 35%.”
MYV optimality ambiguity is a serious fact of life even for a small number

3. Unless otherwise stated, we assume in the following that the efficient frontier is linear constrained.
4. As described in Chapter 2, the procedure computes 51 efficient portfolios ranging from minimum
variance to the maximum expected return portfolios, all satisfying base case constraint assumptions.
5. Unless otherwise noted, the simulations that follow assume 500 efficient frontier replications.

6. The display includes only 25 (out of 500) simulated MV efficient frontiers in order for the reader
to be able to explicitly observe the characteristics of individual efficient frontiers resulting from the
l'[‘SﬂrI1P]ilig process.

7. A greater number of simulations increases the range of efficient frontier risk and return observed.
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Exhibit 5.1 Original and 25 Resampled MV Efficient Frontiers

of very well diversified assets estimated over nearly a 20-year historic
period.

Each simulated MV efficient frontier consists of 51 portfolios equally
spaced along the return dimension from minimum to maximum value.
Evaluate the mean and standard deviation of each of the simulated effi-
cient frontier portfolios on each simulated efficient frontier relative to the
risk-return inputs in tables 2.3 and 2.4. The area populated by the simu-
lated efficient frontier portfolios below the classical MV efficient frontier
displayed in Exhibit 5.2 heuristically describes a “statistical equivalence”
region of alternative portfolios. The results consist of plotting the 51 port-
folios from each simulated efficient frontier for 500 simulated efficient
frontiers.®

The simulated efficient frontier portfolios computed from the simu-
lated efficient frontiers in Exhibit 51 never plot above the original effi-
cient frontier. If variability did not exist, the simulated efficient frontiers
would be the same as Exhibit 2.5. To the extent that variability exists, the
simulated efficient frontier portfolios vary from those in Exhibit 2.5 and
plot below the original efficient frontier.”

Exhibits 5.1 and 5.2 dramatically illustrate the enormous, even start-
ling, variability implicit in efficient frontier portfolio estimation. Very

8. The concept of the “statistical equivalence” region, discussed in Michaud (1989a), has important
antecedents in the work of Jobson and Korkie (1981). Also, see Jobson (1991) and Jorion (1992).
9. This exercise is essentially the same as that in Jorion (1992).
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Exhibit 5.2 Mean-Variance Efficient Frontier Statistical Equivalence Region

wide ranges of portfolios are statistically equivalent to the classical effi-
cient frontier. Many portfolios are available based on the same informa-
tion that produced classical efficiency that may be far more reasonable
and practical investments. Indeed, it is unclear from the displays what
reasonable portfolio might be excluded from the set of statistically
equivalent efficient portfolios.® The results highlight the need for and
importance of a statistical understanding of MV optimization.!

RANK-ASSOCIATED EFFICIENT PORTFOLIOS

While useful for understanding the ambiguity of MV optimality, Exhibit 5.2
does not identify which portfolios under the classical curve are associated
with a given portfolio on the MV efficient frontier. For example, what stat-
istically equivalent portfolios are associated with the minimum variance,
a middle, or the maximum return portfolios on the efficient frontier?
Recall from the construction process that the minimum variance port-
folio has rank 1 relative to the 51 efficient portfolios computed in each
simulated efficient frontier; the maximum average return portfolio has
rank 51 in each simulated efficient frontier. Therefore, any portfolio on the
classical efficient frontier may be associated with similarly ranked port-
folios on the different simulated efficient frontiers. For future reference,

10. In a related study, Chopra (1991) provides a simple three-asset example that illustrates how nearly
optimal portfolios can be dramatically different in composition.
11. Statistical issues will be developed formally in Chapter 7.
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Exhibit 5.3 Middle Efficient Statistical Equivalent MV Portfolios

define the 21st efficient frontier portfolio in return rank as the “middle”
efficient frontier portfolio in Exhibit 4.1.12

The associated minimum variance portfolios cluster nearly indistin-
guishably close to the minimum variance classical efficient portfolio so
that they are nearly indistinguishable. The maximum return simulated
portfolios consist of only the highest return assets, so they are easily
associated. The middle associated MV optimal portfolios are the most
interesting. Exhibit 5.3 displays the 500 rank-associated statistically
equivalent MV efficient portfolios for the middle (21 rank) portfolio. A
circle indicates the position of the middle portfolio on the efficient fron-
tier. The exhibit shows that the rank-associated simulated portfolios rep-
resent a sparse area under the curve. The shape of the rank-associated
regions varies in interesting ways depending on the position of the port-
folio on the MV efficient frontier.

HOW PRACTICAL AN INVESTMENT TOOL?

The statistical character of linear constrained MV optimal portfolios in
the context of estimation error has significant implications for investment
practice. In particular, many investment organizations devote a great deal
of time and effort to formulating and managing optimization inputs. The
size of the statistical equivalence region in Exhibit 5.2 suggests that such

12. Subsequent discussions use this definition consistently. The ranking is from lowest to highest aver-
age return.
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practices may have marginal investment value relative to addressing the
impact of estimation error on defining portfolio optimality.'®

Faced with the level of variability inherent in MV portfolio optimiza-
tion, should an investor abandon the technology? This is, in fact, a very
reasonable conclusion.'* MV optimization typically misuses investment
information. The ambiguity of traditional MV optimization as a result of
estimation error opens the door to a fundamentally new statistical per-
ception of MV efficiency. We develop a number of procedures statistically
informed to enhance the practical value of MV optimized portfolios.
These include:

1. Resampled Efficient Frontier™ optimization

Resampled Efficiency™ rebalancing, menitoring, analysis
Stein estimation

Bayesian estimation

5. Avoiding optimization design errors

SN

s

Each of these procedures can help to improve the investment value of
optimized portfolios. Together they can have a substantial impact on the
value of the optimization process. Properly managed, the outlook for MV
optimization as a practical tool of investment management should be
cautious optimism.

13. We will have more to say on this subject later in our discussion of Markowitz and Usmen (2003) and
Stein estimators in chapters 8 and 11.
14. See the comments in Jobson and Korkie (1981).



The Resampled Efficient Frontier™

This chapter introduces Resampled Efficient Frontier (REF) optimization,
a generalization of linear constrained Markowitz MV portfolio optimi-
zation that includes uncertainty in investment information in the opti-
mization process.! Monte Carlo resampling methods are used to more
realistically condition investment information in the optimization. REF
optimality avoids the literal use of investment information character-
istic of classical MV and other portfolio optimization methods. Under
practical assumptions, REF optimization is provably effective at improv-
ing linear constrained risk-adjusted portfolio return on average.? REF
optimality typically leads to a more effective level of diversification and
risk management than previously available. The resampling process also
allows customization of the optimization process relative to investment
mandates, objectives, strategies, and information character.

EFFICIENT FRONTIER STATISTICAL ANALYSIS

The enormous variation of Monte Carlo efficient frontier simulations in
Exhibit 5.1 demonstrates the need for a statistical view of MV efficiency.

1. RE optimization was invented by Richard Michaud and Robert Michaud and is a U.S. patented
procedure, worldwide patents pending. It was originally described in Michaud (1998, Chapter 6). New
Frontier Advisors, LLC (NFA) is exclusive worldwide licensee.

2. This chapter addresses sign-constrained portfolio optimization, generally the framework of choice
for institutional asset allocation. Index-relative and long-short optimization, often used in institutional
equity portfolio management, is treated in Chapter 9.

42
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In Exhibit 5.1, every simulated MV efficient frontier is the right way to
invest for a given set of inputs. However, the inputs are highly uncer-
tain: how should an investor use the portfolio optimality uncertainty
displayed in the exhibit? From one perspective, the instability of MV effi-
ciency with estimation error demonstrated in the exhibit may indicate
little hope of practical investment value. In reality, the variation suggests
a statistical route for transforming MV optimization into a more invest-
ment useful procedure.

For a highly risk-averse investor, the minimum variance portfolio is the
optimal portfolio for any simulated efficient frontier. Since all simulated
efficient frontiers are equally likely, Resampled Efficiency™ (RE) defines
the optimal minimum variance portfolio as the average of the portfolio
weights of all the simulated minimum variance portfolios. Exhibit 6.1
shows the optimal minimum variance portfolio plotted at the base of the
lower, REF, curve in Exhibit 6.1.

For a risk-indifferent investor, the maximum return portfolio is the
optimal portfolio for any given simulated efficient frontier. Since all
simulated maximum return portfolios are equally likely, the RE opti-
mal maximum return portfolio is defined as the average of the portfolio
weights of all the simulated maximum return portfolios and is plotted at
the top of the lower curve in Exhibit 6.1.

Similarly, RE optimality can be defined for the utility function that
characterizes any investor’s risk-return preferences. The average of the
maximum expected utility tangent portfolios on simulated MV efficient
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Exhibit 6.1 Mean-Variance and Resampled Efficient Frontiers
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frontiers in Exhibit 5.1 defines the RE optimal portfolio. The REF plots
as the lower curve in Exhibit 6.1 and is the collection of all possible RE
optimal portfolios with risk aversion parameters from expected utility
curves ranging from total risk aversion to total risk indifference.** The
exhibit shows that the REF lies within the range of estimation error
alternative optimal portfolios as shown in Exhibit 5.2. The results dem-
onstrate that REF portfolios reflect safer, less extreme investments when
uncertainty in investment information is considered. More generally, the
REF is based on averages of all properly associated optimal portfolios on
the simulated MV efficient frontiers.>®

Table 6.1 displays the minimum variance, middle, and maximum
average return portfolios from the two efficient frontiers in Exhibit
6.1. Little difference exists between RE and MV optimal portfolios at
very low risk. Of course, this is a simple example consisting of only
eight assets; larger optimization universes may find important differ-
ences. As indicated in columns 4 and 5 of Table 6.1, moderate-risk port-
folios display more pronounced optimality differences; the RE portfolio
is more diversified and has less extreme large and small allocations.
Columns 6 and 7 in Table 6.1 display the dramatic difference between
the maximum return MV and RE portfolios; the MV portfolio is a sin-
gle asset while the RE portfolio is a an investment-intuitive, diversified
portfolio.”

3. This construction process is consistent with A-association as described in the appendix. The process
highlights how rational agents may make investment decisions that lead to REF optimality. A concern
(e.g., Markowitz & Usmen, 2003} that the REF is not consistent with rational agent decision making
may be due to the original description of the procedure in the Michaud (1998) text that used rank-
association, a heuristic construction process, seemingly devoid of utility considerations. Rank-
order association is used as a convenient compute-efficient approximation to utility-based REF con-
struction. Our views on rationality axioms and rule-based systems are discussed further in Michaud
(2003, fn. 6).

4. The examples in the text use rank-order association for computing the REF portfolios. The illustra-
tions are based on computing 51 portfolios equally spaced from low to high return for the classical and
each simulated efficient frontier. The RE portfolio is computed as the average of the rank-associated
simulated MV efficient portfolios. The REF portfolios are the collection of the RE portfolios associated
with an MV efficient frontier. The procedure is a useful, simple, compute-efficient, and statistically
stable estimate of utility-function-based REF portfolios. Other approximations are also available with
various compute-efficiency and statistical stability characteristics.

5. Mathematically, REF optimality is an integral in portfolio space of the expected value of the MV
optimal portfolio weights. The resampling/bootstrap process is a Monte Carlo method for spanning
for a given level of uncertainty the linear-constraint-defined portfolio space probabilistically and esti-
mating the integral.

6. It may be of interest to note a statistical perspective on the innovation implicit in the definition of
the REF. Resampling and bootstrap methods in statistics are generally concerned with exploring the
variability implicit in historical data, as in Efron (2005). RE optimization uses the variability exposed
by resampling to define a new statistic that did not exist before.

7. In this case, there is a simple interpretation and analytical derivation of the RE maximum return
optimal portfolio. Each asset weight is equal to the probability that it is truly the maximum return
asset.
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Table 6.1 RE and MV Minimum Variance, Middle, Maximum Return Portfolios

Assets Min Variance Middle Max Return
RE MV RE MV RE MV
Euro Bonds 98% 99% 37% 44% 0% 0%
US Bonds 0% 0% 9% 0% 0% 0%
Canada 00/0 0"/0 1%1 00/0 ]%& 00/0
France 0% 0% 8% 5% 34% 100%
Germany 0% 0% 3% 0% 4% 0%
Japan 2% 1% 13% 15% 33% 0%
UK 0% 0% 7% 3% 16% 0%
us 0% 0% 22% 32% 12% 0%

PROPERTIES OF RESAMPLED EFFICIENT FRONTIER PORTFOLIOS

As indicated by Exhibit 6.1, REF portfolios lie below and generally well
within the range of portfolio risk spanned by the MV efficient frontier.®
The REF is not a statistical artifact of portfolio simulation but represents
a computable alternative set of investments. The question of interest is
whether REF portfolios provide an investment-relevant and practical
alternative for defining portfolio optimality.

From a superficial point of view, RE optimization appears to be an
inferior investment framework. This is because the REF expects less
return and has a more restricted range of risk relative to classical effi-
ciency. In-sample studies of portfolio efficiency, such as Harvey et al.
(2003), conclude that the REF does not define optimal portfolios® The
apparent inferiority of REF portfolios provides the first glimpse, one of
many, of the limitations of in-sample MV efficiency portfolio analysis."”

The appropriate interpretation of REF versus classical MV optimality
is straightforward. If you are 100% certain of your risk-return estimates
(to 16 decimal places of accuracy or more), the Markowitz efficient fron-
tier is the appropriate definition of portfolio efficiency.!' If you are less
than 100% certain of your risk-return estimates, you expect less return
and are less willing to put money at risk, and REF optimality is appro-
priate. The REF properly reflects portfolio optimization in the context of

8. In some cases the REF may extend beyond the MV efficient frontier. These cases are not material to
our discussion here.

9. In-sample utility is greater for classical than REF portfolios. As discussed below, the Harvey et al.
(2003) investor is unlikely to be pleased with their “more optimal” solution.

10. One of the most important contributions of REF analysis is the notion that in-sample MYV efficiency
analysis is an unreliable and often misleading framework for portfolio analysis. Implications for asset
management are discussed specifically in Michaud and Michaud (2005b) and later in the text.

11. As noted in Chapter 4, computed MV efficient frontier portfolios reflect 16 decimal places of accu-
rC‘IC}' for most modern computers.



46 Efficient Asset Management

information uncertainty. To drive the point home, consider an investor
with a complete lack of certainty in his or her investment information.
In this case the optimal efficient frontier is the no-information prior
portfolio, either equal or benchmark weighted.!> The REF portfolio is the
no-information portfolio in this case, while Markowitz optimization
remains insensitive to information uncertainty.® RE optimization is the
paradigm of choice for rational decision making under conditions of
information uncertainty.

As Exhibit 6.1 illustrates, the RE and MV frontiers may be close in MV
space. A superficial reading may suggest that the procedures produce
similar solutions. Exhibit 6.2 is a portfolio composition map of the MV
and RE optimal asset allocations in Exhibit 6.1. Each band of shading rep-
resents one of the eight assets in the base case. A vertical strip through
the bands provides the optimal portfolio allocations at that risk level.
The portfolios with minimum variance appear on the left-hand side of
the charts, high-return portfolios on the right. The upper panel presents
the composition map for MV efficiency; the lower panel depicts RE
optimality. In the left-hand side of each panel, the dark area represents
nearly a 100% allocation to Euro bonds at the low-risk end of the efficient
frontiers.

Exhibit 6.2 shows that the MV efficient frontier includes only five out
of the eight assets: Euro bonds and U.S,, UK, Japanese, and French equi-
ties. If the return estimate for UK. equities (middle asset in the MV map)
is reduced by 0.5%, the allocation to UK. equities disappears across the
entire classical frontier. Since the standard error of the expected return
for the U.K. equities is much larger than 0.5%, this result reflects far more
sensitivity than is desirable or sensible for a statistically insignificant
change. Similar, or more extreme, examples of statistical insensitivity
and instability can be found on nearly every MV frontier.

The composition map for the REF illustrates very different proper-
ties. REF optimality includes all eight assets. The allocations transition
smoothly from one risk level to another. A reduced estimate of return
for UK. equities by 0.5% produces a hardly noticeable change in opti-
mal allocations across the entire frontier. RE optimization is robust and
fundamentally different in character and allocations, even when the two
frontiers are similar in in-sample MV space.™

12. It is a necessary condition that the risk spectrum for estimation error-sensitive MV portfolio effi-
ciency converges to the no-information portfolio as uncertainty increases. This property contradicts
the properties of the heuristic Feldman (2003) and Ceria and Stubbs (2005) methods, where the risk
spectrum is constant and equal to classical efficiency whatever the level of certainty in investment
information. It also contradicts the conclusions of the Chopra and Ziemba (1993) study. Our results
demonstrate that estimation error in risk as well as return is necessary for appropriately defining port-
folio optimality under information uncertainty.

13. Changing the level of forecast certainty in the RE optimization process is discussed further below.
14. Ad hoc portfolio constraints are eften put in place to improve the stability of the MV optimized
solution. Ironically, they can often introduce instability rather than reduce it. Consider the following
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Exhibit 6.2 MV and RE Frontier Portfolio Composition Maps

TRUE AND ESTIMATED OPTIMIZATION INPUTS

Markowitz gives you the right way to invest given that you happen to
know that your risk-return estimates are correct. Under these conditions,
no other set of input assumptions or set of portfolios is more appropriate
as a basis for investment. Although the Markowitz MV efficient frontier
portfolios are not necessarily the investment performance winners for a
given draw of returns in the investment period, on average they are the

example: in an optimization of many assets, two assets (assets A and B) have similar risk and return
characteristics. Suppose the optimizer weights assets A and B in similar proportion along the uncon-
strained frontier. If a binding upper bound were introduced for asset B, asset A would increase at a
greater rate along the frontier to make up for the unavailable asset B. Similarly, if asset B is constrained
but the forecast returns vary for asset A, the volatility of the optimal portfolio weight of asset A would
be increased. Improperly implemented, constraints can form a knife-edge, forcing the optimizer to
make sharp decisions and leading to greater portfolio weight instability. The RE optimization creates
robust solutions by averaging all the knife-edge MV optimizations relative to the uncertainty in the
information.
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best-performing for a given risk level for perfect certainty.!> In this case,
REF optimality has little investment interest.

The problem with the scenario in the previous paragraph, and its con-
clusion, is that it is completely unrealistic. The true value of optimization
inputs is unknown and unknowable. Risk-return estimates in practice
include substantial estimation error and are at best an informed guess
of the true values in the investment period. As demonstrated in Exhibits
5.1 and 5.2, what characterizes MV portfolio optimization is its extreme
sensitivity to estimation errors!® RE optimization addresses the issue of
estimation error sensitivity intrinsic to MV efficiency.

One of the most attractive features of REF portfolios in practice is that
they are often consistent with investment intuition without the need for
ad hoc constraints. For example, the maximum return MV efficient port-
folio in Exhibit 6.1 represents a 100% bet on French equities. However, the
optimization inputs for Japanese and French equities in Table 2.3 are vir-
tually identical. Based purely on these inputs, investors are likely to pre-
fer an equal bet on both markets. In addition, from a return/risk basis,
the inputs for UK. and U.S. equities are not very different from Japanese
and French equities. Consequently, the diverse RE efficient portfolio is
preferable to the MV efficient 100% bet on French equities. The reduced
range of risk simply reflects the need for more diverse optimal portfolios
and is a direct consequence of the uncertainty in investment information
ignored in classical efficiency."”

RE portfolios depend less on any particular characteristic of the opti-
mization inputs. They reflect less extreme portfolio weights than MV
portfolios. Because REF portfolios are averages, not outliers, they are
more likely to provide safe and reliable investments with better out-of-
sample performance on average. Note that REF portfolios with more
moderate bets on assets may have additional practical investment ben-
efits, from reduced liquidity demands to lower trading costs in portfolio
rebalancings.

SIMULATION PROOFS OF RESAMPLED EFFICIENCY OPTIMIZATION

RE optimized portfolios have many desirable investment properties.
However, as we will show, one of the most important features of RE
optimization is its provable performance superiority on average under

15. This point is just statistics. In any randem draw of investment returns, there is a likelihood that
actual events deviate from underlving population statistical parameters in the same way that tossing a
fair coin 10 times will not always result in five heads.

16. Simulation studies implicitly assume that the return distribution reflected in the historic data is
stationary for the investment horizon of interest. The non-stationarity of the return distribution adds
another significant dimension of estimation error to portfolio optimization in practice.

17. Note that even in a two-asset optimization, REF optimality provides useful information by limiting
risk taking at the high end of the frontier.
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practical investment assumptions.’® Jobson and Korkie (1981) tested the
investment performance of unbounded versus equal-weighted portfolios
using simulation proofs. Their procedure can be used to test the invest-
ment performance of MV versus RE linearly constrained optimized
portfolios.”

In a simulation study, the referee is assumed to know the true set of
risk-returns for the assets. For this simulation study, the base case data
(Tables 2.3 and 2.4) represent the true risk-returns.? The referee does
not tell investors the true values but provides a set of Monte Carlo sim-
ulated returns consistent with the true risks and returns.?' In the base
case data set, each simulation consists of 18 years of monthly returns
and represents a possible out-of-sample realization of the true values of
the optimization parameters. Each set of simulated returns results in an
estimate (with estimation error) of the optimization parameters and an
MYV efficient frontier. Each MV efficient frontier and set of estimated opti-
mization parameters defines an RE optimized frontier. This process is
repeated many times.?? In each of the simulations of MV and RE opti-
mized frontiers, the referee uses the true risk-return values to score the
actual risks and returns of the optimized portfolios.

The averaged results of the simulation study are displayed in Exhibit 6.3.
The upper dotted curves display the in-sample averaged MV and RE
frontiers that were submitted to the referee for scoring. The higher dotted
curve is the MV efficient frontier; the lower dotted curve is the REF. The
portfolios are plotted based on the simulated risks and returns. However,
the referee knows the true risks and returns for each simulated optimized
portfolio. The bottom solid curves in Exhibit 6.3 display the average of
the true, out-of-sample, risks and returns of the optimized portfolios. The
higher solid curve represents the RE optimized results, the lower solid
curve the Markowitz optimized results. The lower curves in the exhibit
show that the RE optimized portfolios, on average, achieve roughly the

18. A simulation proof requires assumptions about the true distribution of assets. The “truth” data
set has to be in good financial order for the simulation to properly represent a useful out-of-sample
investment process. Historical data may not always reflect a financially relevant truth data set because
it may often include dominated assets. For example, the monthly returns for the default data set of
indices for the 10-year period from January 1996 to December 2005 exhibits a negative average return
for the Japanese index. In this case Japan is a dominated asset relative to other assets in the optimiza-
tion universe and investment in Japan in the context of sign constraints makes no sense. Dominated
assets that are inconsistent with a relevant financial “truth” in the context of sign constraints for simu-
lation study purposes need to be excluded. While RE optimization can’t be proven te have higher out-
of-sample risk-return in all possible simulation tests, properly implemented it outperforms for finan-
cially relevant cases of practical interest. Appendix B provides a geometric proof of superiority that
is data-set-independent. The tests in this chapter assume sign-constrained optimization. The tests in
Chapter 9 treat the index-relative and associated long-short case.

19. Simulation tests are preferable relative to back tests since back tests are time period dependent and
there are not enough observations available to test for statistical significance.

20. We are indebted to Olivier Ledoit for critical assistance in defining the test framework.

21. Our simulations assume multivariate normal returns.

22. A minimum of 500 simulations of the MV and RE frontiers is used in the study.
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Exhibit 6.3 MV and RE Optimized Portfolio Out-of-Sample Performance

same return with less risk, or alternatively more return with the same
level of risk, relative to the Markowitz portfolios.?* The results represent
the average out-of-sample investment experience of an investor using
either MV or RE portfolios.

The simulation experiment illustrates that the RE optimized portfolios
are, on average, provably effective at improving risk-adjusted investment
performance.?* RE optimized portfolios perform better because they are
better risk-managed by avoiding the unrealistically literal use of invest-
ment information that characterizes Markowitz MV optimization.?®

It should be noted that the simulation results presented are very
conservative. In practice estimation error is far more prevalent than that
represented by a stationary distribution of simulated monthly returns
over an 18-year investment period. Reducing the number of simulated

23. Markowitz and Usmen (2003) replicated the results with the same data set.

24. Seme notes need to accompany the proofs of enhanced investment value in Exhibit 6.3. The results
assume total or real return, sign and budget constrained, MV optimized portfolios. The conclusions
are generalizable for the leverage constraints typically imposed in practice. Leverage simply extends
the frontiers. The index- or benchmark-relative case and associated long-short issues are discussed in
Chapter 9. Note that because Euro bonds effectively dominate U.S. bonds on a risk-return basis, clas-
sical efficiency outperforms REF portfolios at extremely low risk. In this case, there is little ambiguity
associated with the optimal minimum variance portfolio for this data set. In practice, however, Euro
bond estimation error is unknown and an investor would be unable to rely on low-risk dominance in
the investment period. This is an additional though more subtle example of the impact of including
dominated assets in simulation studies.

25. Knight and Satchell (2006) find no benefit to RE optimization. However, they examine only the
unbounded asset weight case as in Chapter 4.
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returns increases estimation error to more realistic levels and enhances
the relative benefits associated with RE optimized portfolios. More
importantly, return distributions are not stationary in investment prac-
tice. The many scenarios simulated from investment information engi-
neer a portfolio optimality designed to protect investments from unlikely
perverse events.

WHY DOES IT WORK

In institutional asset allocation practice, optimization universes consist
of investment-attractive assets.?® As Merton (1987) observes, the opti-
mization universe should consist of what you know. Nonnegative sign
constraints are consistent with an all-assets-investable prior.?” Frost and
Savarino (1988) demonstrate that out-of-sample MV optimized portfolio
performance may be enhanced by combining sign constraints with resa-
mpling data. An equally weighted portfolio is a candidate optimal alloca-
tion in this context.

Sign constraints impose valuable investment structure on each resa-
mpled MV efficient frontier. They act as Bayesian priors to create a bias
in the structure of the resampled optimized portfolios, using the uncer-
tainty of the resampling process to define candidate optimal portfolios.
By definition, the average of the resampled MV efficient portfolios is not
an outlier but reflects the uncertainty inherent in investment informa-
tion.” The simulations show that the averaging process leads to improved
average out-of-sample performance.”

CERTAINTY LEVEL AND RE OPTIMALITY

Up until now, each simulated MV efficient frontier discussed has been
computed by simulating 18 years of monthly returns relative to the data
in tables 2.3 and 2.4. The reason for simulating 18 years of monthly
returns is to be consistent with the information level in the original data
set. However, in general, investors do not know that their risk-return esti-
mates reflect a specific level of information.

The number of simulated returns used to compute the simulated MV
efficient frontiers is a free parameter of the RE optimization process. As
the number of returns becomes large, the set of simulated risk-return

26. Lottery tickets and postage stamps are asset classes typically ignored in an institutional asset
allocation.

27. Including leverage requires a trivial change in the argument and does not invalidate our
conclusions.

28. Moederation of extreme portfolio weights is a characteristic of Stein estimators, discussed in Chapter 8.
Bayes estimation, discussed in Chapter 11, may also moderate extreme portfolio weights. In contrast to
RE optimization, these alternatives operate by changing the inputs prier to initiating the optimization
process

29. Appendix B provides a geometric perception for understanding why RE optimization works.
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Exhibit 6.4 MV and REF Forecast Confidence Levels

estimates approaches the original risk-return estimates and the REF
approaches the MV efficient frontier. When the number of observations
becomes small, the REF approaches the no-information prior efficient port-
folio. The number of simulated returns is a natural parameter for model-
ing the confidence an investor has in risk-return estimates. Exhibit 6.4
illustrates RE optimal frontiers at different Forecast Confidence™ (FC)
levels.?*?1As the level of certainty increases, the REF approaches classical
MYV efficiency. The notion of FC level leads to a fundamental insight: RE
optimization is simply a generalization of Markowitz MV optimization
that allows investors to control the amount of confidence they have in
their investment information in the optimization process.

FC LEVEL APPLICATIONS

One of the most serious critiques of classical portfolio optimization is
asset management rigidity. The market outlook is an important consid-
eration for many investment managers. Different style managers use
investment information very differently and often reflect very different
views and valuations of similar assets. Yet classical optimization is indif-
ferent to the character and source of investment information. Classical
investment process rigidity is a key reason for the indifference or lack of
confidence many institutional managers exhibit toward portfolio optimi-
zation technology.

In contrast, RE optimization is a flexible framework for portfolio opti-
mization in asset management. In particular, the FC level is a valuable

30. Forecast Confidence level is a patent-pending procedure.

31. To facilitate the user experience, the Forecast Confidence (FC) level scale ranges from 1 to 10,
indicating very low to very high information level. On this scale Markowitz optimization is an 11 and
complete uncertainty 0. See further discussion and applications in Michaud and Michaud (2004a).
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tool for customizing RE optimization to a manager’s investment process.
For example, variation in the FC level in the optimization may be used to
reflect changes in confidence in the market outlook. Growth stock manag-
ers may wish to raise FC levels to reduce portfolio diversification, reflect-
ing the more ephemeral near-term character of their information, while
value managers may wish to lower FC levels to increase diversification,
reflecting the longer-term character of their information. The ability to
customize as well as create optimized investment strategies is a hallmark
of the RE optimization process.

THE REF MAXIMUM RETURN POINT (MRP)

The statistical nature of RE portfolio optimization leads to some signifi-
cant differences from classical MV optimization. For instance, the REF
frontier may peak and then curve downward.® This turning point is the
“maximum return point” (MRP) of the REF. The possible existence of an
MRP is a key concept for understanding and using REF optimality.
Exhibit 6.5 illustrates how the REF MRP may arise. In each panel
there are three high-risk assets; uncertainty is indicated by the ellipse
around each point. The left-hand panel presumes an MV optimization
level of certainty in information; the risk-returns are point estimates. The
efficient frontier MRP portfolio includes only one asset. As uncertainty
increases, as in the middle panel, there is less certainty concerning the
return of the highest-return/risk asset; the REF includes some allocation
to all three assets and the MRP REF portfolio lies below and to the left
of the Markowitz maximum return portfolio. In the right-hand panel
there is little certainty in the return of the highest-risk assets and the REF
includes significant allocations in all three assets. In this case the MRP
portfolio may emerge where the REF has a downward-sloping inefficient

High certainty case Normal certainty case High uncertainty case

. REF critical point

Efficient range
of REF

Exhibit 6.5 Forecast Certainty Levels and the REF Maximum Return Point

32. See Michaud and Michaud (2004b).
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segment. Any risk beyond the MRP is not optimal and not on the REF by
definition.

The REF MRP assures investors that the efficient maximum return
portfolio is appropriately diversified. The MRP arises because RE opti-
mization uses information from all assets in the optimization universe.*
In contrast, since there is no notion of risk-return estimation uncertainty
in classical MV optimization, investors may think that taking increasing
amounts of risk is always justifiable.3*

An REF MRP is relatively rare in institutional asset allocation studies.
This is because assets in the optimization universe often have relatively
similar attractive risk-return characteristics. In contrast, an REF MRP is
often observed in large stock universe equity portfolio optimizations.
This is because the optimization universe may have many assets that have
relatively little return but much risk. The existence of high-risk assets with
little return implies that high risk return is uncertain. As uncertainty
increases, the uncertainty at high-risk portfolio levels reduces expected
return and the REF exhibits an MRP. The identification of the REF MR point
prevents the overuse of inferior investments® A necessary condition for a
well-defined equity optimizer is to estimate the maximum level of risk that
is consistent with the level of information in the optimization universe.®

There is an important associated issue in this context. Why would
investors include statistically insignificant assets in the optimization
universe? Merton (1987) teaches that the optimization universe should
be defined in terms of investable assets. An optimizer is not capable
of telling which investments are not investable; that is the role of the
analyst. Including non-investable assets in an optimization is much like
including bad information in a Bayesian prior. However, Merton’s advice
in the context of an equity optimization for a large stock index may
result in unacceptably large tracking error risk and underrepresented
sectors and industries. One simple solution is described in Michaud
and Michaud (2005a): include an index-weighted composite asset of
the statistically insignificant stocks in the index in the optimization.”
The Merton principle of investing only in what you know remains the
appropriate one.

33. Preliminary simulation tests are consistent with out-of-sample replication of in-sample REF MRPs.
34. The existence of the MRP is a useful way of justifying much institutional investment practice
where assumed tracking error is often far less than the maximum available in a MV optimization.
While active asset managers are sometimes critiqued for being closet indexers, a low level of active
risk may only reflect a rational view of level of information in their estimates. Alternatively, not know-
ing the limits of efficient risk in an optimized portfolio may afflict asset management for many lever-
aged hedge fund managers.

35. Generally, low-return, high-risk securities have very small allocations in REF portfolios. More
important is the financial rationale associated swith their inclusion in the optimization.

36. The concept of the MRP has important applications in scaling returns and proper optimization
design.

37. Further description and implications of using the composite asset are given in the reference and in
Chapter 9.
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IMPLICATIONS FOR ASSET MANAGEMENT

The REF plots below the classical frontier because it reflects uncertainty in invest-
ment information. As a consequence, the REF challenges much conventional
academic and professional wisdom on optimality and management practice.

The REF challenges the results of many studies of in-sample utility
function optimization of portfolios on the MV efficient frontier. Because
REF portfolios have less estimated return and risk, in-sample utility
studies find REF portfolios “less than optimal.” But investors are very
unlikely to prefer the “more optimal” portfolios on the MV efficient fron-
tier if they promise less likely risk-adjusted return ex post. The conse-
quence of ignoring out-of-sample performance of optimized portfolios
is that many conclusions of in-sample utility studies are likely to be mis-
leading or invalid.* Journal editors are well advised to require simulation
studies of out-of-sample optimized portfolio performance in the context
of estimation error as a matter of good practice.

The REF challenges the results of many studies based on analytical
formulas derived from optimizing the in-sample information ratio (IR)
or reward-to-risk ratio of portfolios on the unconstrained MV efficient
frontier. In these studies the IR is used as an investment intuitive and
practical surrogate for in-sample utility. In-sample studies for maxi-
mizing IR without estimation error lead to seductive though erroneous
prescriptions for asset management, such as increasing the size of the
optimization universe and trading frequently. While the analytic for-
mulas for in-sample IR are improved, the out-of-sample consequences
on performance of the optimized portfolios are ignored.* Not only are
the prescriptions likely to be invalid, they are often the inverse of good
investment practice.® Clearly, only a framework that ignores estimation
error and out-of-sample performance could conclude that increasingly
frequent trading would improve optimality.# Our studies demonstrate
that considering the implications of estimation error on out-of-sample
performance is essential for defining portfolio optimality and avoiding
serious investment practice errors.*

CONCLUSION

RE is an important new tool for defining portfolio efficiency in prac-
tice. It is useful for understanding the statistical characteristics and

38. Examples include Harvey et al. (2003), who do not address out-of-sample performance of their
“more optimal” utility functions, and Chopra and Ziemba (1993), who invalidly conclude that estima-
tion error in risk can be ignored.

39. Examples include Grinold (1989), Grinold and Kahn (1994, Chapter 6}, and Clarke et al. (2002, 2006).
40. More discussion is given in Michaud and Michaud (2005b).

41. Trading issues are discussed further in Chapter 7.

42. The composite asset procedure of Chapter 9 and other considerations for dealing with statistically
insignificant investment information often reverses the prescriptions of IR based analytic formula
studies.
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practical limitations of MV efficiency. In addition, in the context of a
relevant constraint prior, it is provably effective on average at enhanc-
ing the out-of-sample investment value of optimized portfolios. Rela-
tive to MV efficiency, resampled efficient portfolios are also likely to
be more robust and investment intuitive, two useful characteristics in
many institutional contexts.

APPENDIX A: RANK-VERSUS A-ASSOCIATED RE PORTFOLIOS

Rank association is used in the text for computing RE optimal portfo-
lios. One simple alternative is to associate simulated MV efficient frontier
portfolios using a quadratic utility function. Given a value of . (lambda),
associate the efficient and simulated efficient linear constrained portfo-
lios that minimize:

o =02—HL 6.1)

Each value of 1 defines a specific portfolio on the MV and simulated
efficient frontiers. Varying X from zero to infinity spans the set of efficient
and simulated efficient frontier portfolios. Table 6A.1 displays the true
reward-to-risk ratios for MV and resampled efficiency in the same test
procedure as in Exhibit 6.3, where A is used to associate simulated with
efficient portfolios. The A values are shown in the first row of Tables 6A.1
and 6A.2.4 )~ association appears to be slightly less statistically stable
than rank-association. While rank-association is not always the procedure
of choice, it is often a practical compromise.

Table 6A.1 Lambda-Associated True Reward-to-Risk Ratios, MV Efficiency

A 0 10 15 20 50 100 infinity
Mean 0178  0.201 0.200 0195 0170 0152 0.127
Return (%) 3.3 44 50 b5 8.1 93 9.9
Risk (%) 54 6.3 72 8.3 14.0 18.0 22.7

Table 6A.2 Lambda-Associated True Reward-to-Risk Ratios, Resampled Efficiency

'y 0 10 15 20 50 100 infinity
Mean 0.180  0.202  0.200 0196 0.173 0.6l 0.151
Return (%) 34 45 51 5.8 8.1 9.0 9.6
Risk (%) 54 6.4 74 8.6 13.6 16.3 18.5

43. For example, when % equals 10, 15, and 20 in Table 6A.2, the average true risk is larger for resampled
than for MYV efficiency.
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APPENDIX B: ROBERT’S HEDGEHOG

The following example helps to illustrate RE optimization.

Robert has a favorite pet hedgehog named Ralph. Ralph escaped from
his cage and is now somewhere in the tall grass surrounding the house.
Fortunately, Robert fitted Ralph with a GPS locator device, and the house
is surrounded by a sturdy hedgehog-proof fence that Ralph can’t burrow
underneath. Therefore we can safely assume that Ralph is somewhere
inside the fence, and we know that his GPS locator can pinpoint Ralph’s
location within a 10-meter radius circle. To find the hedgehog as quickly
as possible, though, Robert wants to start his search where Ralph is most
likely to be. How does Robert find his hedgehog?

Referring to Exhibit 6.6, we see that the GPS locator shows Ralph is
somewhere in the circle with center A. Point A is therefore a place to start
Robert’s search. However Robert notes that A is outside of the fenced
yard. So Robert narrows his search to the area indicated by the GPS
system but within the fence. Points on the fence and within the cir-
cle close to point A are better starting points. Point M is the closest
fenced point to A and is a more optimal place for Robert to begin his
search for Ralph.t

Suppose the information used by the GPS locator system is statis-
tically estimated and has estimation error. In this case it is useful to

g

Exhibit 6.6 Robert’s Yard

44. Hedgehog picture courtesy of Florida Center for Instructional Technology.
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repeatedly query the GPS system and request new resampled estimates
of the hedgehog’s position that may vary materially with each estimate.
Some of the resampled estimates similar to M may place Ralph at points
along the fence; others would be in the yard’s interior. Since there is no
reason to choose one of the estimates over the others, we take an aver-
age of all solutions on the fence and in the yard. The resampled estimate
of Ralph’s location is likely to be near but not at the fence, as in point R.
The resampled estimate is therefore likely to be a more realistic estimate
of the actual position of Robert’s hedgehog.

Our story has important implications for estimation of optimized port-
folios. Suppose Ralph represents not a hedgehog in a two-dimensional
yard but an optimal portfolio in high-dimensional portfolio space, and
the signal comes not from a GP’S but from an estimate of the return distri-
bution of all assets. Point A, outside the fence, represents an unconstrained
MYV optimization estimate. Point M, at the fence, represents a Markowitz
constrained MV optimization solution. Resampling the constrained MV
problem gives multiple solutions along the boundary and interior of the
solution space. Point R, the average of these solutions, represents the RE
optimization solution. R is a better, more realistic solution than M because
it includes all the information associated with Markowitz optimization
as well as addressing estimation error.

Of course, finding Ralph is a lot simpler than finding an optimal port-
folio. We know things exactly in Ralph's case that we can only estimate
for a real problem. For example, we know exactly what the boundary and
confidence region look like for Ralph but must estimate those for the port-
folio problem. Another fundamental difference is the complexity of the
problem. Finding Ralph is a linear problem: if the GIS is off by a meter,
Robert's search will be off by about a meter. Finding an optimal portfolio
requires inversion of the covariance matrix (among other things), which
is not linear at all.** In the base case data, this complexity translates to an
error multiplier of up to 528.

Note the circle centered at point B. It is natural to ask what happens
when there is no fence or the GPS estimate is wholly within the yard as
in B. In these cases, the Markowitz and RE optimizations do not improve
the estimate. However, linear constraints are always present in practice.
Moreover, as Jobson and Korkie have shown, the instability of uncon-
strained MV optimization in the presence of estimation error implies
that B is a very poor estimate of true MV optimality.

Our story demonstrates that, properly used, RE optimization is a
never worse, more stable, and likely more realistic solution for computing

45. The error associated with this process relates to the condition number of the covariance matrix. The
condition number is a measure of how close to singular the covariance matrix is. Inverting a nearly
singular covariance matrix is analogous to dividing by a number close to zero.
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MYV optimized portfolios in practical investment contexts.*® Because MV
optimization is very sensitive to estimation error, the benefits of RE rela-
tive to MV optimization are likely to be highly investment significant. It
has not escaped our notice that the results do not depend on a quadratic
objective. They may apply to any maximization or optimization problem
with estimation error in the context of informative constraints.

46. Estimation error always exists in practice. As Chapter ¢ will indicate, an index-relative or long-
short optimization framework may require a different approach for defining constraints than the
traditional asset allocations in this chapter.



Portfolio Rebalancing, Analysis,
and Monitoring

Investment information is often statistically insignificant.! MV optimiza-
tion is insensitive to investment insignificance, resulting in frequent but
ineffective and costly portfolio rebalancings. In current investment prac-
tice, portfolio rebalancing and monitoring rules are largely ad hoc. For
example, institutions commonly rebalance their portfolios on a calendar
basis, such as monthly, quarterly, or annually. Another widely used rule
is to rebalance a portfolio if asset weights exceed a predetermined fixed
range, such as +5%, of optimal or benchmark weights. Ad hoc rules exist
to limit the number of rebalancings and te avoid trading on insignificant
information.

A proper and reliable portfolio rebalancing rule is necessarily statis-
tical. An investor will want to know whether trading a portfolio for a
presumably more optimal one is likely to significantly improve perfor-
mance in the investment period. If the current portfolio is not statistically
significantly different from the optimal, trading is unlikely to be produc-
tive. The challenge lies in identifying statistically significant differences.

This chapter introduces statistically based rigorous portfolio trading
rules for linear constrained MV optimized portfolios. Rigorous statistical
rules have not been available until now because standard analytical tech-
niques do not treat linear constrained MV optimization.? Rebalancing
rules for linearly constrained MV optimized portfolios require properly

1. This fact is particularly the case in large index equity portfolio optimization.
2. See Shanken (1985) for a statistical test in the context of unbounded MV optimization.

60
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applied resampling and bootstrapping techniques. Our new patented
procedures will also be useful for portfolio monitoring and asset import-
ance analyses.?

RESAMPLED EFFICIENCY AND DISTANCE FUNCTIONS

Optimization information is always uncertain in practice; consequently,
in this chapter, RE optimality defines the notion of portfolio efficiency.
An RE optimal portfolio is an average of properly associated efficient
frontier portfolios. In statistical parlance, the portfolio weights of an
RE optimal portfolio represent a sample mean vector. The statistical
properties of a sample mean vector are mathematically and statistically
convenient.

From a statistical perspective, a portfolio is efficient with respect to a
desired REF optimal portfolio if the portfolio weight vectors differ insig-
nificantly. A “distance” function measures the difference between the
portfolio weights. Distance functions identify the possible significance
of the need-to-trade probability and therefore when trading is, or is not,
needed for improved investment performance.

Many pitfalls accompany the search for a financially relevant distance
function for portfolio statistical analysis. REF optimal portfolios repre-
sent linear constrained sample mean vectors. In the unconstrained case
of Chapter 4, resampled portfolio weights have a well-known probabil-
ity distribution.®* With unconstrained portfolios, inference with respect to
statistical differences between resampled optimal and candidate portfolio
weights is straightforward.® Statistical inference is associated with a test
statistic that operates as a multi-asset distance function. Unfortunately,
linear constrained REF portfolios invalidate the statistical assumptions
of standard procedures. One of the principal goals of resampling and
bootstrap methods is to define test statistics and confidence sets in situ-
ations where standard statistical methods may not be available or yield
exact answers. Resampling is the method of choice for developing valid
statistically rigorous portfolio rebalancing rules for linear constrained
MV optimized portfolios.

Since standard statistical tests for linear constrained MV optimized
portfolios are unavailable, a distance function in the context of a resa-
mpling process provides a useful alternative. Unfortunately, there are a
number of financially invalid approaches for defining a distance function.

3. The RE rebalancing procedures in this chapter were invented by Robert Michaud and Richard
Michaud and are protected by U.S. patents. New Frontier Advisors, LLC is worldwide licensee.

4. The procedures in this chapter apply to sign-constrained as well as index-relative or long-short
portfolios.

5. The usual assumptions include multivariate normal returns or sufficiently large random samples.

6. Hotellings” T? is often the basis of such a procedure. See the appendix for further description of
confidence regions and inference for the sample mean vector under standard assumptions.
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An obvious but invalid proposal is to use a Euclidean metric (square root
of the sum of squared differences between corresponding weights of the
two portfolios) for defining the distance between two portfolios. A finan-
cially valid portfolio distance metric requires consideration of portfolio
risk in aggregate, including correlations.”

The relative variance is a financially useful metric for defining the dis-
tance between two portfolios. Formula (7.1) defines the relative variance
between portfolio T, the current portfolio, and P,, the RE optimal port-
folio.® ¥ is the covariance matrix used in the optimization. For illustrative
purposes, see the data in Tables 2.3 and 2.4. Formula (7.1) is the basis of
the RE rebalancing studies in the remainder of the chapter.

(P—P)*sX(P—P,) (7)

PORTFOLIO NEED-TO-TRADE PROBABILITY

The resampling process provides a simple means of computing a prob-
ability distribution based on the test statistic in formula (7.1). We proceed
as follows.

Compute simulated MV efficient frontiers and the associated opti-
mal portfolios for a given REF portfolio P, Sort the distances or rela-
tive variances according to formula (71) from small to large. Compute
the percentile value of the sorted relative variances according to a given
need-to-trade probability; for example, a 90% need-to-trade probability
is a portfolio relative variance equal to the 90th percentile value of the
sorted relative variances. The 90th percentile represents the fact that 90%
of the relative variances of simulated optimal portfolios are as close as
or closer to REF optimal. Any portfolio with a relative variance greater
than the 90th percentile value is said to have (at least) a 90% need-
to-trade probability. A 90% need-to-trade probability may often indicate
that rebalancing is recommended. In contrast, a 10% need-to-trade prob-
ability may often indicate little reason to trade.

It should be noted that the trading implications of a need-to-trade
probability depend greatly on the manager’s investment strategy, avail-
able data, investment horizon, and outlook. A value manager often sets
a higher-threshold need-to-trade probability than a growth stock or
momentum or statistical arbitrage manager. Note that the need-to-trade
probability is a portfelio-based rebalancing rule. The distribution of the
relative variances varies with the REF portfolio.

7. More than one kind of distance or metric function can and may be used. The one we choose for illus-
tration is generally the most easily understoed and widely relevant for investment practice.

8. Formula 7.1 assumes vector and matrix operations. The term (P-P,) is the difference vector of port-
folio weights. The term (P—P,)" is the transpose of the difference vector. X is the return covariance
matrix. The result of the matrix and vector products is a number.

9. One approach for defining association is the rank-association procedure described in Chapters 5 and 6.
Other association procedures are discussed later in this chapter.
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The limitations of the above procedure, originally described in Michaud
(1998, Chapter 7), can be seen most vividly when considering the REF
maximum return portfolio. To illustrate, consider the base case data.
Each associated simulated MV efficient portfolio relative to the maximum
REF portfolio consists of a single asset; in other words, each simulated
maximum return efficient portfolio is 100% in France, Japan, and so forth.
While the REF maximum return optimal portfolio is well diversified, none
of the associated simulated MV efficient portfolios that would be used in
the definition of relative variances are REF diversified. The fact that the
associated portfolios are not RE optimal diversified portfolios limited the
power of the original statistical test. The problem is that the associated
portfolios are not RE optimal diversified portfolios. This is the problem
solved by the meta-resampling process described below.

META-RESAMPLING PORTFOLIO REBALANCING

The objective of the meta-resampling procedure is to properly associate
simulated RE optimal portfolios with REF optimal portfolios in the port-
folio rebalancing rule.

The meta-resampling procedure repeats the steps required for com-
puting REF optimal portfolios but adds an additional step: compute an
REF for each simulated MV efficient frontier computed in the original
process. One way of describing the new procedure is that each simulated
“parent” MV efficient frontier spawns a “child” REF. The association
process in formula (71) replaces parent MV efficient frontier portfolios
with child REF simulated portfolios. Returning to the maximum return
REF portfolio, the relative variances in formula (7.1) are computed with
the maximum return child RE optimal portfolio. All portfolios in the
meta-resampled need-to-trade probability estimation procedure are
RE optimal portfolios. Exhibit 71 provides an illustration of the set of
meta-resampled optimized portfolios associated with the middle REF
portfolio and can be compared to Exhibit 5.3 without meta-resampling.
Unlike Exhibit 5.3, the associated meta-resampled portfolios are nicely
compact around the REF portfolio.

Meta-resampling does not change the definition of REF optimality;®
meta-resampling simply changes the statistical characteristics of the associ-
ated portfolios for the need-to-trade probability rule. The statistical power
of the meta-resampled need-to-trade probability rule is fairly uniform
across the entire frontier. This fact is a significant enhancement of the orig-
inal procedure. The meta-resampling process also corrects the statistical
limitations that existed in the applications of the need-to-trade rule. For
example, the enhanced procedure markedly reduces the skewness of asset

10. An average of averages is still the average.
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Exhibit 7.1 Resampled Efficiency and Associated Efficient Portfolios

weight distributions.! The trading rule is interpretable as the likelihood
that a portfolio will perform similarly to the desired optimal in the invest-
ment (out-of-sample) period.

PORTFOLIO MONITORING AND ANALYSIS

The RE optimization rebalancing process also provides a rigorous statis-
tical framework for portfolio monitoring and asset importance analysis.
Suppose an asset such as the S&P 500 index is a member of the optimiza-
tion universe. Then every meta-resampled RE optimal portfolio associ-
ated with a given REF portfolio has an allocation to the asset. The REF
portfolio is an average of all the simulated associated efficient portfolios.
Consequently, for any asset, there is a set of simulated optimal alloca-
tions associated with the average REF allocation. This means that various
statistics, such as the standard deviation of the average allocation, and
percentile values, can be calculated on an asset-by-asset basis.

Exhibit 72 provides a meta-resampled asset-by-asset statistical dis-
tribution analysis of a given (middle) REF portfolio. The hatch marks
refer to the REF optimal asset allocations at this particular point on the
frontier. The bars represent the 25th/75th percentile ranges of the alloca-
tions.”? The results are presented in tabular form in Table 71. The second
column is the REF asset allocation; the fourth and fifth columns indicate

11. The Britten-Jones (1999) range estimates of optimized portfolio weights use the unbounded
MYV optimization framework. RE results have less variance as well as different coefficients.
12. Standard deviations may also be displayed. Percentile ranges are often more useful in practice.
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the 25th and 75th percentile estimates for the REF asset allocations. The
third column is the standard error of the RE optimized weight for the
500 simulations used in the computation. The standard error is useful to
understand how much error may exist in the simulation computation for
each REF asset allocation.

Exhibit 72 and Table 7.1 are very useful portfolio management tools.
One application is portfolio monitoring. If the current portfolio has asset
weights that range outside the percentile bars in Exhibit 7.2, rebalancing
to optimality may be advisable. Note that the ranges vary by assets. The
percentile ranges can be compared to the incorrect ad hoc fixed-range
rules in current practice. Note also that optimal portfolio weight mag-
nitude may often be independent of statistical significance. For example,
in Exhibit 7.2, U.S. bonds have a larger allocation than UK. equity, but
the UK. equity allocation is statistically significant while the U.S. bonds
allocation is not.

Statistical significance of an asset is another important application of
the meta-resampled probability rule. It identifies which assets are import-
ant and which are not. Note that the meta-resampled asset importance
procedure is an enhancement of the ad hoc partial derivative rules in
common use in equity portfolio optimization. Statistical significance,
and not partial derivatives, is the proper method of determining import-
ance in an optimization. The procedure can also be used to enhance the
Sharpe (1992) returns-based style analysis procedure by including statis-
tical estimates of the significance of the style coefficients.
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Table 7.1 RE Optimal Middle Portfolio and Statistics

Assets REF Optimal Standard 25th 75th
Portfolio Error Percentile Percentile
Euro Bonds 44% 0.7% 40% 50%
US Bonds 9% 0.9% 0% 14%
Canada 0% 0.1% 0% 0%
France 6% 0.4% 3% 9%
Germany 3% 0.3% 0% 5%
Japan 12% 0.5% 9% 16%
UK 6% 0.4% 3% 9%
us 19% 0.6% 15% 23%
CONCLUSION

Resampling provides an important route for understanding the statisti-
cal characteristics of linear constrained MV optimized portfolios with
uncertainty. RE optimization methods lead to the first statistically rigor-
ous and effective portfolio trading rule. Resampling also provides the
first rigorous yet easy-to-apply portfolio monitoring framework and
asset importance analysis. The RE optimal rebalancing rule often leads
to sharp changes in institutional trading policies. RE asset analysis often
shows that allocation size and importance are not closely related. Proper
application of the RE statistical rules makes available new fundamental
and reliable practices for improved asset management.

APPENDIX: CONFIDENCE REGION FOR THE SAMPLE MEAN VECTOR

The computation of a confidence region for a sample mean vector often
assumes a random sample of vectors from a multivariate normal distribu-
tion (Johnson & Wichern, 1992, chapter 5). In this case, the sample mean
vector has an F distribution with p and n—p degrees of freedom, where p
denotes the rank of the covariance matrix and n the number of random
samples. If the sample size is large enough, the distribution is approxi-
mately multivariate normal and the F distribution is applicable. The test
statistic for the vector of the sample mean is as follows:

(Xx—p, ) *Z*(x— 1) < constant. (7TA.1)
Q (!

Here, X is the sample mean vector of the random vectors and X is the
sample covariance matrix of random vectors. The distribution of the
statistic in formula (7A.1) is an F distribution dependent on the number
of observations and degrees of freedom or rank of the positive definite
covariance matrix. Formula (7A.1) is interpretable as a normalized dis-
tance function of the sample mean vector. The simultaneous confidence
interval is the collection of vectors that satisfy (7A.1).
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Suppose a two-asset optimization with only a budget constraint. The
confidence region centered at the resampled efficient portfolio is, in gen-
eral, the area contained in a tilted ellipse, where the tilt depends on the
correlation of return between the two assets. For portfolios with three
or more assets, the values of the portfolio weights that lie in a resam-
pled efficient frontier confidence region have an N-dimensional ellipsoid
geometry that is often hard to visualize.

For the resampled efficient frontier, the portfolio weights from the
resampled MV efficient portfolios define the sample mean vector and
covariance matrix. The budget constraint reduces the rank of the covari-
ance matrix by 1. For sign-constrained efficient portfolios, additional
issues arise. For example, the sign constraint leads to a minimum vari-
ance resampled portfolio in Table 6.1 that depends largely on the return
of one asset. In this case, sign constraints may significantly reduce the
rank of the portfolio covariance matrix. Consequently, the assumptions
of the test statistic (7A.1), as applied to resampled MV efficient frontier
portfolios, are invalid.



Input Estimation and Stein Estimators

The investment value of optimized portfolios depends on proper input
estimation as well as effective portfolio optimization. For many analysts
and investors, input estimation methods may seem a largely settled and
uncontroversial issue. Managers usually base asset allocation risk-return
estimates on sample means, standard deviations, and correlations com-
puted from historic returns, with adjustments for current information.
Institutional equity portfolio optimization generally employs commer-
cial risk measurement services for estimating the components of port-
folio risk and advanced statistical methods for computing return.

Contemporary professional statisticians use a variety of modern stat-
istical techniques that are designed to improve the forecast value of
estimates of risk and return from historic data.! Many of these new proced-
ures are based on results that indicate current investment practice may
be suboptimal. These results are particularly important because invest-
ment intuition is unreliable. Portfolio optimization requires multivari-
ate statistical estimation; that is, the simultaneous estimation of means,
standard deviations, and correlations for many securities. Since financial
assets are generally related to each other, there is likely to be information
in the group of returns that can improve parameter estimates for each
asset.

1. Examples include Jobson, Korkie, and Ratti (1979, 1980) and Jobson and Korkie (1981), who use James-
Stein (1961) estimation to improve MV optimization, and others mentioned in this chapter.
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This chapter is devoted to the discussion of Stein estimators for improving
portfolio optimization inputs.? These procedures are designed to use group
information to improve the forecast value of estimates. Properly used, Stein
methods may enhance optimization estimates and lead to more intuitive
optimized portfolios. Stein estimation also provides a framework for add-
itional tests of the out-of-sample performance of RE versus MV optimization.

ADMISSIBLE ESTIMATORS

The concept of admissibility is an important one in modern statistical esti-
mation. A statistic is said to be admissible if no other statistic is always bet-
ter.? Intuitively, admissibility is a minimal condition for using a statistic to
estimate a parameter. The reader may wonder why anyone uses a statistic
that is not admissible; however, the investment community often does.

Charles Stein (1955) astonished the scientific community by proving
that sample means are not an admissible statistic for a multivariate popu-
lation mean under very general conditions. Stein’s result implies that
there are uniformly better methods for estimating optimization means
than the sample mean in many cases. Though these results appeared
more than 45 years ago, financial economists and investment practitio-
ners have often ignored methods that have the potential of improving
optimization parameter estimation* Interestingly, financial economists
and investment practitioners are not alone.

BAYESIAN PROCEDURES AND PRIORS

Many of the most powerful methods in modern statistics are Bayesian.
Bayesian statistics generally differ from standard frequentist statistics
in that they apply outside beliefs and structure to statistical estimates.
Stein estimators are examples of Bayesian statistical estimation proced-
ures. Bayesian procedures assume a prior. A prior is either a reasonable
guess at the answer or an assumption that imposes exogenous structure
on potential solutions. Stein estimators differ from more general Bayes-
ian estimators in that the prior is designed to be generally applicable for
a wide range of estimation contexts. Stein methods transform the opti-
mization by imposing structure on the forecasts to lower the estimation
error in sample statistics and reduce dependence on pure statistically
estimated data. Bayesian procedures are fundamentally the basis of most
of the proposed techniques for improving MV optimization.

2. The methods are named after Charles Stein, a pioneer of modern multivariate statistical estimation.
3. More precisely, an estimator is admissible if no other estimator is uniformly better for a given loss
function.

4. For example, James and Stein (1961).

5. See Efron and Morris (1973) and Copas (1983) for discussions of some of the Stein estimator
controversy.
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It should be noted that the development of admissible Stein estima-
tors for optimization input estimation is an area of ongoing research.
With some exceptions, Stein estimators were not developed with financial
applications in mind. An appropriate prior is an important issue in any
application. Chapters 9 and 10 discuss additional applications of Bayesian
procedures in investment contexts of interest.

FOUR STEIN ESTIMATORS

Stein estimators are generally “shrinkage” operators. The amount of
“shrinkage” depends on the consistency of the prior with sample data.
Stein estimators generally work by producing a posterior estimate, which
is a combination of observed history and the Bayesian prior. For example,
a Stein estimator of asset means will tend to shrink sample means more
toward the prior when they are dissimilar than when they are not. The
prior provides an anchor to the estimation process that tends to reduce
estimation ambiguity while increasing forecast value.

A number of Stein estimators are available for MV optimization esti-
mation.® These include the James-Stein (1961), Frost-Savarino (1986), Ledoit
(1994, 1997), and Stein (1982) estimators. The James-Stein procedure is an
estimator for asset means. The Frost-Savarino procedure is a joint estima-
tor of the means and covariances. The Ledoit and Stein procedures are
estimators for the covariance matrix.

JAMES-STEIN ESTIMATOR

The James-Stein estimator for the means is the most widely known Stein
estimator” Since the formula is designed for wide applicability, it is of
interest to discuss it in some detail. The Stein estimator formula of the
mean of asset i, i, is:

f=X+c, (X—X) 8.1)

Where X= global sample mean, X, = sample mean of asset i, ¢, 20 and <1.F

This estimator shrinks the sample mean X, to the global mean, X,
depending on asset variance, 6?2 Shrinkage increases as a function
of distance from the global mean and asset variability and decreases
with the number of historical observations.” When an observed historical
mean is determined to be sufficiently unreliable (due to a high standard
error), it is shrunk to the global mean. Alternatively, if a historic mean

6. Some early applications to MV optimization include Jorion (1986) and Brown (1976).

7. There are some closely related versions. The one that may be most useful for MV optimization is the
positive rule empirical James-Stein estimator that allows for unequal variances and assumes a global
equal mean prior (Efron & Morris, 1977, p. 123).

8.¢,=max{0,1— (k—3) 6}/ (X, —X))}, k = number of assets, k = 3, 62 = asset i variance

9. See also Efron and Morris (1973).



Input Estimation and Stein Estimators 7

Table 8.1 Monthly Dollar {Net) James-Stein Returns (Percentages)

Euro us Canada  France Germany Japan UK us
Bonds  Bonds
Mean 0.30 0.31 0.59 0.59 0.59 059 059 060
Standard 1.56 2.00 5.50 703 6.22 7.04 6.01 430
Deviation

has a very small error estimate, the posterior will be very close to historic
value.

The James-Stein estimator for the mean may have a significant effect
on optimization inputs and results. Consider the return premium data of
the base case (Table 2.3). The monthly global mean is 0.59% (7.0% annu-
alized). Many of the equity assets deviate significantly from the global
mean and have large standard deviations. Consequently, they are candi-
dates for significant shrinkage. On the other hand, although bond assets
have an average return that also deviates substantially from the global
mean, the level of variability is less and shrinkage to the global mean
is less.

Table 8.1 displays the James-Stein estimates of monthly average return
premiums corresponding to Table 2.3. For convenience, Table 8.1 dupli-
cates the monthly standard deviations. Note that the James-Stein proced-
ure shrinks five of the six equity average returns to the global mean.1?

The James-Stein procedure highlights the substantial volatility and
ambiguity implicit in the data in Table 2.3. The estimator in Table 8.1 rad-
ically alters perception of information in the historic data and conveys
interesting investment implications. One interpretation is that, given the
level of variability, the relatively large average returns of many equity
asset classes are likely to be unreliable forecasts of future performance.

JAMES-STEIN MV EFFICIENCY

James-Stein estimation often leads to very different MV and RE frontiers.
Exhibit 8.1 displays the MV and RE efficient frontiers that result from
replacing the historical sample means with the James-Stein estimates in
Table 8.1. Exhibit 8.1 provides the MV and RE composition maps for the
James-Stein RE optimal portfolios.

The efficient frontiers in Exhibit 8.1 can be directly compared to Exhibit
6.2. Exhibit 8.2 indicates that the composition of the MV and RE efficient
portfolios is very much affected by James-Stein estimation. In the MV
efficiency case, the U.S. dominates at high risk.

10. One alternative is to shrink the equity assets separately from the bond assets since the level of vari-
ability is so different. However, in this case, the James-Stein estimator leads to shrinkage to the global
mean for all equity assets. The Table 8.1 results seem preferable from a number of perspectives.
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Exhibit 8.1 James-Stein Means MV and RE Efficient Frontiers

OUT-OF-SAMPLE JAMES-STEIN ESTIMATION

The James-Stein estimates of optimization input parameters are designed
to be closer to true population values out-of-sample than traditional
sample means. This observation suggests a test of the out-of-sample
investment value of RE compared to MV efficient frontiers using James-
Stein estimation. As the discussion in Chapter 5 noted, the amount of
estimation error in the base case data set is much less than in the Jobson
and Korkie (1981) data. To use more realistic levels of estimation error, the
James-Stein estimates of return assume 10 rather than 18 years of simu-
lated monthly returns in the simulation proof framework of Chapter 6. The

Mean-variance Resampled

54 6.0 7.3 9.2 11.2 149 54 6.2 7.8 101 12.7 15.5
Risk (%) Risk (%}
Il Euro bonds E®M US bonds EAUS [ UK [ Japan [ Germany [2) France [ Canada

Exhibit 8.2 James-Stein MV and RE Composition Maps
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Exhibit 8.3 MV and RE Frontiers with James-Stein Mean Adjustment

in-sample and out-of-sample results are displayed in Exhibit 8.3. As in
prior studies, the dotted curves represent in-sample and the solid curves
represent out-of-sample average frontier portfolios.

The results in Exhibit 8.3 can be compared to those in Exhibit 6.3.
Exhibit 8.3 shows that the in-sample and out-of-sample MV and RE fron-
tiers for the James-Stein estimated data are far closer to each other than
in Exhibit 6.3. In other words, James-Stein estimation results in closer
agreement of what-you-see in-sample relative to what-you-get on aver-
age out-of-sample for MV and RE optimization! However, the tests also
show that whatyou-see with RE optimization and James-Stein estima-
tion can be very similar to what-you-get on average out-of-sample, particu-
larly at higher levels of risk. Risk level differences are easily explained:
James-Stein estimation has little effect at low risk because efficient assets
have little variability but more effect at higher risk levels with more vari-
able efficient assets. The potential similarity of in-sample versus out-
of-sample RE optimized James-Stein estimated optimized portfolios may be
very useful for long-term financial planning applications and equity portfolio
optimization where estimated return is measured relative to cost of trading.

FROST-SAVARINO ESTIMATOR

The Frost and Savarino (1986) estimator is one of the most interesting
proposed for MV optimization. Netably, it is a joint estimator of the

11. Similar results are reported in Jobson and Korkie (1981).
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Exhibit 8.4 Frost-Savarino MV Efficient Frontier

means and covariances. The prior is the efficiency of an equal-weighted
portfolio.

Exhibit 8.4 illustrates the Frost-Savarino MV efficient frontier for the
data in Exhibit 2.5. Note that the Frost-Savarino frontier shifts downward
and slightly inward at the high-return end and upward and slightly
inward at the low-return end. Essentially, the Frost-Savarino frontier
shrinks toward the equal-weighted portfolio. The procedure generally has
less impact on MV optimization inputs than the James-Stein estimator.

Frost-Savarino Stein estimation has many attractive properties con-
ceptually. It is the only procedure that estimates all the MV optimiza-
tion parameters in a unified framework, an approach that seems most
appropriate for portfolio optimization. It is a less severe adjustment of
optimization inputs than James-Stein. On the other hand, the procedure
has significant limitations. The equal-weighted portfolio prior is often not
investment relevant in practical applications. In addition, the algorithm
is not very numerically stable. Optimizations consisting of 50 or more
assets may be difficult to compute. Frost-Savarino estimation is even
more computationally intensive when used in conjunction with Monte
Carlo simulation procedures and REF estimation.

COVARIANCE ESTIMATION

The covariance matrix is a summary of the risk estimates associated with
assets in an MV optimization.1?

Asset allocation studies often estimate the sample covariance matrix
with historic return data, as in tables 2.3 and 2.4. Commercial equity

12. The covariance matrix is square with n rows and columns equal to the number of assets. The (i,j)
element is the covariance of the i* and j* assets. It follows that the i diagonal element is equal to the
variance of the i'" asset.
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portfolio risk services typically use factor models and advanced statis-
tical techniques to estimate the components of portfolio risk. Multivariate
equity risk estimation addresses the particular needs of optimizing large
institutional portfolios and communicating with clients. The analysis
of equity risk estimation is a substantial endeavor beyond the scope of
this text and constitutes a significant digression from the study of MV
optimization.®

Asset managers have typically ignored Stein methods for covariance
estimation. Conventional wisdom has it that risk estimation is a second-
order consideration for portfolio optimization relative to forecasting
return. Unfortunately, conventional wisdom may be in serious error in
important instances. There are two issues associated with covariance
estimation that directly affect the value of optimized portfolios: (1) exist-
ence of sufficient data for well-conditioned covariance estimation and
(2) impact of estimation error on covariance estimation.

Conceptually, covariance estimation requires substantially more data
than are usually available for portfolio optimization. Optimizing N
assets requires N time periods of observed returns* If insufficient data
are available, the covariance matrix is singular and proper portfolio opti-
mization infeasible.!® However, much more data are typically required
to avoid ill conditioning. An ill-conditioned covariance matrix is often a
serious cause of MV optimization instability (Michaud, 1989a).6

Increasing the number of assets has another estimation error effect on
portfolio optimization. While increasing the number of assets increases
estimation error in return estimation linearly, it increases estimation
error in the covariance matrix quadratically. For a sufficiently large num-
ber of assets, the accumulation of covariance estimation error may be
the dominant factor in the optimization process.” Such effects implicitly
affect large universe equity portfolio optimizations. In many cases the

13. See Rosenberg and McKibben (1973), Rosenberg and Guy (1973), and Rosenberg (1974).

14. Essentially, portfolio optimization requires inverting the covariance matrix. A covariance matrix
may be non-singular, and therefore invertible, but not well conditioned. In this case the optimization is
very unstable. As a rule of thumb, the number of time periods observed should be an order of magni-
tude more than the number of securities in the optimization universe.

15. Unfortunately, many commercially available optimizers have unsophisticated algorithms and are
insensitive to whether or not the covariance matrix is properly defined. Such an optimizer should be
avoided since it will attempt to invest in investment nonsense such as positions with zero or even
negative estimated risk.

16. Technically, ill conditioning amounts to having a large ratio of the largest to smallest eigenvalue
associated with the sample covariance matrix. The consequence of this large ratio is to effectively
amplify the (potentially small) errors in the estimated return series by a very large factor; that factor
being the so-called condition number of the sample covariance matrix. The base case data covariance
matrix condition number is 530, indicating significant instability and ill conditioning. Additionally, a
so-called discretization error is also to blame for such increased instability in the MV optimization.
Specifically, keeping all other things the same, increasing the number of assets in the MV optimiza-
tion problem increases the resulting condition number of the covariance matrix, rendering the MV
optimization problem more difficult and less stable.

17. Personal communication from Philippe Jorion, May 1996.
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problems of insufficient data and the accumulation of estimation errors
are unrecognized, leading to unstable optimizations and irrelevant port-
folios. Only recently have Stein covariance estimation methods become
available that address some of these important issues.

STEIN COVARIANCE ESTIMATION

Ledoit (1994, 1997) developed Stein estimation methods for the
sample covariance matrix. The Ledoit estimator is a general procedure
for optimally shrinking the covariance matrix toward a prior.!® Notably,
the Ledoit estimator uses the Sharpe (1964)-Lintner (1965) capital asset
pricing model (CAPM) as a prior for estimating risk. The CAPM prior,
arguably the most appropriate for understanding risk for financial data,
assumes assets are correlated to each other only through their sensitiv-
ity to the market by a linear relationship between systematic risk and
return.

The Ledoit estimator has many attractive properties for finance. As
Ledoit shows, the estimator significantly improves sample covariance
estimation and reduces instability in MV optimization in the context of
classic financial data. It is also the first covariance estimation proced-
ure to allow robust estimation of the full covariance matrix even if the
number of assets exceeds the number of observations. In addition, the
procedure is very flexible and has the potential to be used with other
alternative priors.

Another Stein estimator of the covariance matrix was developed by
Stein (1982) and Dey and Srinivasan (1985). Their procedure is a mini-
max estimator similar in important ways to Ledoit." Using Monte Carlo
simulation, Ledoit (1994) finds that both Stein estimators may signifi-
cantly improve sample covariance estimation and the stability of MV
optimization.

Stein estimators help when standard errors are large. If there are
many observations, or the number of assets is small, the benefits of the
Ledoit and minimax estimators may be relatively minimal. For the his-
toric data of tables 2.3 and 2.4, neither estimator significantly alters the
sample covariance matrix or the optimization results. Ledoit estimates
that the benefits of his covariance estimator kick in when the number of
assets and periods reach 30.2° One area of significant application may be
to global equity portfolio optimization, where the number of assets can
be very large and the number of historic periods of useful data is often
small. Because the Ledoit estimator may be useful in situations with

18. See the appendix to this chapter for further, more technical discussion.

19. In both cases, the sample covariance shrinks toward a prior. In the Stein-Dey-Srinivasan case, the
estimator is minimax; that is, no other estimator has lower worst-case error. This is in contrast to the
Ledoit estimator, which uses square error loss (Hilbert-Schmidt or Frobenius norm).

20. The benefits depend on the ratio of the assets to periods as well as to the prior.
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minimal historic data, applications to short-term asset allocation may
evolve over time.

Stein covariance estimation may also be useful for asset management
by improving regression estimates of equity risk and return forecasts.
Generalized least squares (GLS) regression is more powerful and robust
in many applications relevant to investment management (Kandel &
Stambaugh, 1995). Ledoit shows that his covariance estimator used in the
context of GLS regression may significantly change the factor-return rela-
tionships observed in some well-known empirical studies.?' Other Stein
estimators designed to improve the forecast power of linear regression
estimation are also available. In particular, the James-Stein linear regres-
sion estimator is widely used by many working econometricians.?

UTILITY FUNCTIONS AND INPUT ESTIMATION

The reader may have noted that Bayesian priors as applied to utility
function-based optimization have been ignored in our discussion of
input estimation. This may seem surprising because many of the early
studies on estimation error and its impact on MV optimization applied
Bayesian priors to utility functions.”® One reason they are not addressed
here is the practical problem of utility function specificity discussed in
Chapter 3. In addition, as Barry (1974) notes, although the optimal port-
folio chosen by Bayesian estimation methods applied to utility functions
may vary, the efficient frontier composition may not change. Procedures
that leave the efficient frontier portfolios unaltered are likely to have
limited practical investment value.

AD HOC ESTIMATORS

There are a number of ad hoc estimators of the covariance matrix. Per-
haps the best known is Sharpe’s (1963) single-index model. There are also
multi-index and equal-correlation models. Such metheds provide simple
approaches to estimating risk and the covariance matrix. They may have
practical value when the number of observations is small relative to the
number of assets and the alternative is a singular covariance matrix. His-
torically, ad hoc procedures have often been the only ones available for
dealing with many limitations of investment data. However, as Ledoit
(1994) notes, such procedures may impose arbitrary structure and ignore
information available in historic data. The Stein covariance estimation
methods are conceptually superior. Properly formulated Stein methods
ignore neither reasonable structure nor information in historic data. Such

21. Ledoit (1994) repeats Fama-French (1992) and finds that beta is now nearly significant.
22. Judge et al. (1988, pp. 836-838) discuss Stein rules for multivariate linear regression.
23. For example Bawa et al. (1979).
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estimators weight the prior and data optimally to produce superior risk
estimation. Although ad hoc methods have the virtue of simplicity and
familiarity, they may be inferior to well-defined Stein estimators, when
available.

STEIN ESTIMATION CAVEATS

In Chapter 6 asset allocation studies, sign constraints reflect an all-
assets-investable prior. Sign constraints provide investment-relevant
direction for computing MV and RE optimized portfolios. In the simula-
tion studies in the text, the base case data set is assumed as the truth.
In general, base case data reflect increased return with increased risk
and are not strictly consistent with the James-Stein “all assets equal”
prior.2 The example illustrates the fact that Stein estimation priors may
be inconsistent with optimization constraint priors and the combination
may not be additive.?® While in practice truth and level of estimation
error are unknown, an analyst should be vigilant that Stein estimation
priors are consistent with optimization constraint priors in order to
benefit from RE optimization.

CONCLUSIONS

Stein estimators represent an important set of procedures for improving
the practical value of MV optimization. Rationalizing the use of inadmis-
sible estimators for the mean or covariance in practice is often difficult
when financially relevant alternatives are available. It is also increas-
ingly hard to rationalize ad hoc estimators used by many investment
practitioners. On the other hand, the development of Stein estimators for
portfolio optimization is at an early stage. In particular, the identifica-
tion of the optimal Stein estimator in many practical investment contexts
remains open. In addition, Stein estimation priors may be inconsistent
with constraint priors implicit in RE portfolio optimization and may not
be additive. The investment community has a strong vested interest in
encouraging further research in the area of Stein estimators with finan-
cially relevant investment priors.

APPENDIX: LEDOIT COVARIANCE ESTIMATION

If the sample covariance matrix has rank N, where N is the number of
assets, then the matrix will have N positive eigenvalues. For the historic
data in tables 2.3 and 24, the eight eigenvalues corresponding to the

24. Robert Michaud has developed a CAPM-prior James-Stein estimate of return.
25. Another possible example is the Ledoit CAPM prior estimator in an index-relative optimization.
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eight asset classes range from 0.23 to 121.6. The eigenvalues of a matrix
are often useful in understanding its statistical characteristics.?

Ledoit (1994) demonstrates that stability of the optimization depends
on statistical properties of the eigenvalues of the covariance matrix. In
particular, the ill conditioning of the sample covariance matrix is attrib-
utable to a small eigenvalues bias toward zero. The bias increases as the
number of assets increases relative to the number of periods. Improved
covariance estimation requires pushing the small eigenvalues away from
zero while shrinking the large ones toward an appropriate prior. The
Ledoit procedure is not a specific estimator but may allow many alterna-
tive financial priors.

26. Fora useful brief introduction into properties of matrices, including eigenvaluesand eigenvectors, see
Johnson and Wichern (1992, Chapter 2).



Benchmark Mean-Variance
Optimization

Benchmarks arise naturally in many asset management contexts. For example,
an equity manager’s performance is typically evaluated relative to the return
and tracking risk of an index such as the S&P 500. Tactical asset allocation per-
formance is generally measured relative to a return index. Investment policy
asset allocation may be associated with funding an appropriate return liability!

This chapter addresses MV optimization relative to a return index
or benchmark. The benchmark redefines risk in terms of the return of
an investmentrelevant objective. Mathematically, benchmark-relative
optimization is MV optimization with a linear equality constraint rep-
resenting the benchmark.? Benchmark-relative optimization without
linear inequality constraints, such as sign constraints, is subject to the
same estimation error investment limitations as described in Jobson and
Korkie (1980, 1981) and discussed in Chapter 4. While MV optimization
relative to a benchmark may reduce instability at low risk, the statistical
significance of investment information may be diminished.

BENCHMARK-RELATIVE OPTIMIZATION CHARACTERISTICS

Traditional sign-constrained benchmark-relative MV optimization dis-
played in Exhibit 2.2 is based on residual risk-return estimates relative to

1. We address benchmark optimization in the context of a return liability for financial intermediaries
more specifically in Chapter 10.
2. Sum of active weights equals zero.

80
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Tahle 9.1 Monthly Dollar (Net) Index-Relative Returns (Percentages), 01/78—12/95

Euro us Canada France Germany Japan UK us
Bonds Bonds

Mean —048 —051 —036 0.13 —0.22 013 004 —0.04
Standard 392 4.05 4.31 490 4.81 463 4.06 321
Deviation

the difference between asset and benchmark return? By definition, the
benchmark portfolio is MV residual return efficient*

Assume the data of tables 2.3 and 2.4 and the index portfolio defined
in Table 2.2. Table 9.1 displays the monthly means and standard devi-
ations of index-relative return for the eight asset classes. While average
returns simply reflect a constant shift in value, risk has changed.’ For
example, while Japan and France are, as before, nearly equal in return,
index-relative risk for Japan is significantly less than France because it is
a larger component of the index in Table 2.2. The residual risk-return esti-
mates and sign constraints result in the efficient frontier in Exhibit 2.2.

TRACKING ERROR OPTIMIZATION AND CONSTRAINTS

Institutional equity portfolio investment mandates are typically defined as
maximizing residual or index-relative return for a given level of residual
or tracking error risk. The composition of the index is assumed known
with certainty. MV index-relative portfolio optimizations are typically long
only; that is, sign constraints on asset weights are assumed. This is because
investors often want to avoid unlimited liability investments. The sign-
constrained efficient frontier in Exhibit 2.2 represents the index-relative
optimization framework of choice for many asset allocation studies and
equity portfolio strategies.

Investment managers often add additional constraints to a MV opti-
mizationinanattempt to improve out-of-sample investment performance.
As noted in Chapter 6, sign constraints may reflect a valuable Bayesian
prior for defining optimality in a non-index-relative RE optimization in the

3. For an index return benchmark, there are three equivalent ways of defining index-relative MV opti-
mization. When the optimization inputs are defined as index-relative or residual returns, either active
portfolio weights (sum to zero) or portfolio weights (sum to 1) MV optimization is equivalent because
the index has no risk and no return. Alternatively, MV optimization based on the original optimiza-
tion inputs with active weight constraints is also equivalent. This is the approach taken in Roll (1992).
4. The issue of whether the benchmark is or is not MV efficient on an absolute return basis and its
implications is discussed further in the section on Roll’s (1992) analysis.

5. The correlations are also changed.

6. Other reasons for constraints include legal restrictions, investment mandates, and ad hoc
marketability.
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context of estimation error.” Investment-relevant optimization constraints
provide useful direction to the uncertainty represented in the resampled
MV optimization averaging process for defining enhanced optimality.®
However, in an index-relative context, sign constraints may reflect per-
verse constraint priors for RE optimization. For example, from Table 9.1,
sign constraints imply that bonds are desirable index-relative invest-
ments, contradicting their large negative residual returns.

Asset investability depends on willingness to under- or over-weight
assets relative to index weights. Index-relative returns can be used to
formulate active weight sign constraints.’ In Table 9.1, Euro bonds, U.S.
bonds, Canada, and Germany have relatively large negative residual
returns. An optimal portfolio is unlikely to have positive active weights
for these assets, all other things the same. Similarly, an optimal portfolio
is unlikely to have negative asset weights for France and Japan. On the
other hand, the US. and UK. residual returns are relatively small and
risk is moderate. An active weight sign prior for UK. and U.S. equities
may be undesirable. It is difficult to anticipate optimized active weight
sign for these two assets because the value of risk reduction versus return
enhancement may vary over the efficient frontier. Table 92 summarizes
a set of constraints reflecting reasonable active weight sign priors for the
index-relative MV optimization data in Table 9.1. Note that all assets are
sign constrained.!

The Chapter 6 simulation framework is applied to compare trad-
itional sign-constrained index-relative MV optimization relative to active
weights-constrained index-relative RE optimized portfolios. The simu-
lation truth is the sign-constrained MV efficient frontier based on Table
9.1 data. The dotted curves in Exhibit 9.1 display the average in-sample
simulated efficient frontiers, the solid curves the out-of-sample average
performance. The dotted black curve is the in-sample MV index-relative

Table 9.2 Index-Relative Constraint Priors

Euro us Canada France Germany Japan UK us
Bonds  Bonds
Min 0% 0% 0% 10% 0% 30% 0% 0%
Max 0% 0% 5% 100% 10% 100%  100%  100%

7. The discussion teaches that thoughtful non-ad hoc {economically meaningful) constraints are your
friends and should always be included. Note how the unbounded MV optimization framework ignor-
ing estimation error in Clarke et al. (2002, 2006) leads to very different conclusions.

8. Excluding, of course, constraints that are investment mandated, legally imposed, and ad hoc based.

9. Bayesian prior constraints may also be based on statistical significance rather than the sign of index-
relative return. For example, the information ratio can be used to dichotomize positive, negative, and
insignificant index-relative constrained assets. Other methods that include correlations may also be
desirable.

10. We turn to long-short investing later in the chapter.
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Exhibit 9.1 In- and Out-of-Sample Index-Relative MV and RE Optimized Portfolios

sign-constrained efficient frontier; the dotted gray curve is the in-sample
RE index-relative Table 9.2 constrained efficient frontier. The solid black
curve represents the out-of-sample performance on average of the MV
efficient portfolios; the solid gray curve represents the out-of-sample per-
formance on average of the RE efficient portfolios.

The in-sample MV efficient frontier expects more estimated return and
is willing to bear more risk than the in-sample RE constrained portfolios.
This is the familiar error-maximization effect associated with MV opti-
mized portfolios. The lower solid curves teach that the efficient portfolios
with active weight sign priors and RE optimization dramatically dom-
inate traditional MV index-relative optimized portfolios out-of-sample.
RE optimization, properly managed, may substantially enhance invest-
ment performance in an index-relative framework.

Exhibit 9.2 displays the composition maps of the sign-constrained
index-relative MV and Table 9.2 constrained RE optimized portfolios. The
upper panel is the composition map for index-relative MV optimized
portfolios; the lower panel is the composition map for RE optimization.
Compared to MV, the RE composition map represents smooth transitions
from one level of risk to another and more diversified portfolios at higher
levels of risk.

CONSTRAINT ALTERNATIVES

It is of interest to compare the performance of alternative active weight con-
straints relative to those in Table 9.2. The constraints in Table 9.3 replace sign
constraints with active index weight constraints for the UK. and U.S indices.
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Exhibit 9.2 MV and Constraint Priors RE Index-Relative Composition Maps

Table 9.3 optimizations relative to Exhibit 9.1 are more constrained,
resulting in efficient frontiers that have a reduced range of risk but also
less error maximization in-sample and similar levels of return at reduced
risk out-of-sample. Relative to Table 9.2 constraints, Table 9.3 constrained
RE optimizations produce enhanced performance on average within a
reduced range of efficient risk.

Another alternative strategy for defining asset weight constraints is
to consider assets such as the UK. and U.S. as representing statistically
insignificant index-relative risk-return estimates. A statistically insig-
nificant asset is consistent with assigning an index weight constraint.
Assigning index weights to statistically insignificant assets is likely to
reduce estimation error and enhance performance while restricting the
range of efficient risk.

Table 9.3 Alternative Index Constraint Priors

Euro us Canada France  Germany Japan UK us
Bonds  Bonds

Min 0% 0% 0% 10% 0% 30% 10% 0%
Max 0% 0% 5% 100% 10% 100%  100%  35%
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The issue of statistically insignificant optimization information is par-
ticularly pervasive in index-relative equity portfolio MV optimizations for
large stock indices. Equity portfolio managers often have statistically sig-
nificant information for only a relatively small number of stocks. Statisti-
cally insignificant information implies large estimation error and reduced
investment value of optimized portfolios, all other things the same.

Michaud and Michaud (2005a) propose the use of a “composite asset”
as a general way of dealing with insignificant information in an index-
relative equity portfolio RE optimization. A composite asset is defined
as an index-weighted asset of all insignificant information assets in the
optimization universe. The procedure redefines the optimization uni-
verse in terms of statistically significant assets and the composite asset.
The benefits include reduced estimation error while maintaining index
representativeness and tracking error risk control.

ROLL'S ANALYSIS

There are a wide variety of indices proposed for index-relative tracking error
MYV optimization mandates. The indices may vary from standard capital
market indices such as the S&I” 500 to sectors, industries, and hybrid asset
classes. From the manager’s point of view, the index defines the investment
objective and little consideration may be given to the investment relevance
of the index. However, investors and trustees have a stake in whether finan-
cial characteristics of the index may limit investment value.

Roll (1992) provides an important theoretical analysis of the index-
relative efficient frontier framework. He demonstrates that many port-
folios not on the index-relative MV efficient frontier may dominate index-
relative efficient portfolios if the index is not MV efficient. Roll’s concern
is that the convenience of an index-relative efficient frontier framework
for asset management may come at too high a price in terms of subopti-
mal investment.

Roll’s valuable cautionary analysis teaches us to avoid ad hoc indices
in index-relative optimization." The theoretical limitations of the index-
relative framework diminish in practice as the MV efficiency and economic
representativeness of the benchmark increase. Roll notes in his conclusion
(1992, pp. 19-20) that the problem with the suboptimality of the index-
relative MV efficiency framework may need to be balanced against the
impact of estimation error on MV optimization in the classic framework.

INDEX EFFICIENCY

The technology developed in Chapter 7 provides a basis for measuring
the statistical MV efficiency of an index portfolio. Table 94 compares the
(sign-constrained) index portfolio defined in Table 2.2 to the similar risk

11. See also Kandel and Stambaugh (1995) and Roll and Ross (1994).



86 Efficient Asset Management

Table 9.4 Index vs. Risk-Similar RE Optimal Portfolio

Euro us Canada France Germany Japan UK us
Bonds Bonds

Index 00%  0.0% 5.0% 10.0% 10.0% 30.0% 10.0% 35.0%
REOpt 29% 18% 1.2% 179% 4.6% 253% 15.6% 30.7%

level (non-index-relative sign-constrained) RE optimal portfolio from
Chapter 6. On inspection the two portfolios seem to have similar port-
folio structure. However, the meta-resampled need-to-trade probability
measures 20%, an indication of statistically significant differences and
suboptimality. Skepticism about the investment value of index-relative
MV optimization using the index in Table 2.2 in a practical setting may
be warranted.

A SIMPLE BENCHMARK-RELATIVE FRAMEWORK

Imposing general capital market structure on an optimization rather
than optimizing to a specific index may be desirable in some cases. For
example, in our base case data set, we may wish to include global mar-
ket structural relationships such as equal U.S. and non-U.S. equity and
equal Eure and U.S. bonds. Slack constraints may be imposed to allow
the structural relationships to be satistfied within some range of values,
such as +10% of equality. A benchmark-relative framework with slack
constraints on investment-relevant structural relationships allows for RE
optimization performance enhancement. The slack constraints condition
the uncertainty created in the resampling of investment information to
define, via the averaging process, improved risk-adjusted MV optimal
portfolios on average. The optimized portfolios exhibit the usual desir-
able REF investment properties of robustness and stability.

An important benefit of the slack constrained RE optimization frame-
work is that it may avoid the Roll critique of possible suboptimal invest-
ment solutions. The limitation of the procedure is that it does not satisty
a tracking error risk objective required in many investment mandates.
If the index-relative tracking error objective is required, the traditional
framework is appropriate. From the investor’s point of view, however,
concern with the limitations of a suboptimal index on the value of the
investment is an important consideration.

LONG-SHORT INVESTING

Traditional sign-constrained index-relative MV optimization is long-short
investing without leverage. Increasingly, long-short investing is becoming
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a standard in institutional equity portfolio management. Prime broker
technology and trading systems have reduced costs and made long-short
investing economically practical in many cases of investment interest.

Equity portfolio indices such as the S&P” 500 index have highly asym-
metric index weights. Long-short investment strategies are often proposed
to address index asymmetric optimization biases in equity portfolio
management.!”? In long-only optimization, index weight asym-
metry limits the ability of the manager to use negative information for
small index weight stocks; small stocks can only be assigned small nega-
tive active weights, while large stocks can be assigned large negative as
well as positive active weights in an optimized portfolio. A long-short
120/20 or 130/30 strategy may allow relatively symmetric constraints on
stocks in an optimization universe.” Two-fund long-short strategies may
also limit the impact of index asymmetric constraints on portfolio opti-
mization* A simple alternative that avoids short investing is two-stage
optimization; the first stage determines the theoretically optimal portfo-
lio with index-symmetric constraints; the second stage attempts to closely
replicate this portfolio while satisfying investability constraints.

Long-short investing may also be of interest in asset allocation stud-
ies. For example, in the case of Table 9.2 index-relative constraint priors,
since shorts were not allowed, the bond indices are constrained to a zero
weight. From an investment perspective the bond indices represent large
negative index-relative returns that would likely enhance investment
value if shorting were allowed.

Exhibit 9.3 compares the Chapter 6 simulation test of in-sample and
out-of-sample index-relative RE and MV long-short optimization. Short-
ing is allowed for the four large index-relative residual return assets;
specifically, the minimum weights are —20% for the bond indices, —15%
for Canada, and -10% for Germany. The short minimums are uniformly
—20% (left-hand symmetric) from index weights. In the RE optimized
portfolios the remaining constraint priors in Table 9.2 are employed. In
the MV optimized portfolios, sign constraints are assumed for all other
assets up to a maximum of 100%.1

Exhibit 9.3 displays the in-sample and out-of-sample RE optimized
efficient frontiers for the index-relative long-short constraint priors as
described in the prior paragraph relative to the RE optimized frontiers
for the Table 9.2 index-relevant sign-constrained priors. The RE optimized

12. Long-short optimized portfolios generally need to satisfy certain conditions (Jacobs et al,, 2006a) in
order to have practical investment value.

13. See Jacobs and Levy (2006b).

14. In the classical long-short case analyzed in Michaud (1993), before shorting, both the long and short
portfolios are sign-constrained, creating relatively symmetric constraints on the total portfolio.

15. This framework is fairly standard for MV long-short index-relative optimization where assets are
sign-constrained except for those where shorting is allowed to enhance investment value
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Exhibit 9.3 Average In- and Out-of-Sample Long-Short Index-Relative MV and RE Frontiers

long-short portfolios dominate performance on average relative to the
traditional MV long-short portfolios.

CONCLUSION

Index-relative MV optimization has important applications in investment
practice. The index portfolio may define the investment mandate or use
of invested assets. In many cases the investment mandate is defined to
maximize index-relative return relative to a given level of index track-
ing error risk. Asset investability depends on your willingness to under-
or over-weight assets relative to index weights. Sign constraints on asset
weights may often reflect a perverse Bayesian prior in an index-relative
RE optimization. The resampling process uses index-relevant active
weight sign constraints to enhance likely investment performance. RE
optimization, properly managed, has the potential for significantly
improving index-relative, long-short as well as sign-constrained portfolio
optimization. However, as Roll (1992) has shown, the MV efficiency of
the index is related to the value of the investment framework. A non-
active-weight index-relative framework may provide a useful alternative
benchmark relative framework that may avoid the Roll (1992) critique.

16. The RE optimized portfolios also dominate out-of-sample MV optimized long-short portfolios with
the same RE constraints.
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Investment Policy and Economic
Liabilities

Investment policy is the proposed long-term average risk level or asset
allocation stock/bond ratio for the fund. For many trustees, appro-
priately defining investment policy relative to fund liabilities or use of
invested assets is a major priority and significant fiduciary responsibil-
ity. An investment policy study often consists of substantial expenditures
of time and capital. Many consider investment policy as the single most
important investment decision for long-term investors.!

Investment policy is generally implemented in a core-satellite frame-
work comprising strategic and tactical asset management mandates. A
strategic asset allocation consists of an optimal risk-adjusted portfolio for
a particular stock-bond mix policy and rebalancing to maintain that pol-
icy. Strategic asset allocations represent a core investment strategy that
are generally based on relatively long-term risk-return relationships rela-
tive to liquid, diversified, and economically representative fixed and non-
fixed income global capital market indices, often implemented with index
funds.? Long-term investors consider strategic asset allocation funds the
investments of choice because they are designed to optimally enhance
long-term compound return on a risk-adjusted basis. Tactical funds

1. Brinson et al. (1986, 1991) find that the long-term average stock/bond ratio is the single most import-
ant factor explaining long-term performance of institutional pension funds. Hensel et al. (1991), using
similar data though somewhat different methods, find that investment policy is as important as any
investment decision.

2. Index-fund-based Exchange Traded Funds (ETFs) are an increasingly popular alternative particu-
larly for financial advisors and sophisticated individual investors.

89
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of various kinds may be included to enhance return relative to capital
market benchmarks. The long-term consequences of risk policy decisions
may be computed with specially designed calculators and Monte Carlo
simulation studies.

Conceptually, MV optimization is a natural framework for defining
investment policy. MV optimizations in a benchmark- or liability-relative
framework seem an obvious choice for defining an optimal long-term
asset allocation. The index-relative methods of Chapter 9 can be used to
develop appropriate optimal portfolios. Beyond the limitations of trad-
itional MV optimization, investment policy studies have the additional
burden of defining a financially relevant liability benchmark.

MISUSING OPTIMIZATION

In practice, an MV optimization framework used in defining investment
policy is very vulnerable to being misused and overmanaged. Because
of instability, MV optimizations are often inconsistent with investment
intuition and consensus institutional perceptions unless highly man-
aged. A great deal of pressure exists to find acceptable optimized invest-
ment policy allocations. Many constraints and assumptions, rationalized
as reflecting institutional objectives, are often part of the optimization
process. All too often an investment policy MV optimization study pro-
vides little more than a veneer of scientific respectability for rationalizing
the recommendations of an ad hoc process.

Because of the importance of the problem, and the limitations of trad-
itional MV optimization, alternative approaches for defining an investment
policy have been proposed. The most popular alternative is Monte Carlo
financial planning with liability modeling! As discussed in Chapter 3,
Monte Carlo asset-liability financial planning in practice is essentially a
search algorithm of candidate asset allocations that typically have not been
optimized relative to any liability benchmark.

RE optimization with a relevant liability objective has much potential
for alleviating many of the important limitations of the MV optimization
process for defining investment policy. This chapter focuses on defining
the liability in a benchmark-relative optimization framework.

ECONOMIC LIABILITY MODELS

An MYV efficiency liability-relative optimization is conceptually a useful
framework for defining investment policy in many cases of practical inter-
est (Michaud, 1989¢). The optimization procedure requires an investment

3. An institutional quality calculator for computing the long-term implications of investment decisions
is available from New Frontier Advisors LLC. See Michaud (1981, 2003) for a description of theory and
estimation procedures and Michaud et al. (2006a, 2006b) for long-term strategic risk-return estimation.
4. For example, Michaud (1976).
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policy-relevant prior in the form of an economic model of fund liabilities
or obligations (Michaud, 1989b).

The objective of economic liability modeling is to describe how fund
values and obligations interact and change dynamically in time. The
economic liability model reflects changes in the fund’s obligations as a
function of changes in economic factors and asset returns. The economic
model may also be a function of the level of assets and liabilities when
not equal in value. The success of the procedure depends critically on
a valid model of liability risk. An economic liability-relative optimiza-
tion may radically alter the investment character and value of investment
policy recommendations.

Financial intermediary liabilities often have a substantial beta relative
to equity capital market indices. This is because intermediary liability
risk is often related to maintaining competitiveness relative to similar
institutions. For example, an important objective of many college endow-
ment funds is to promote and maintain competitiveness with similar
educational institutions relative to the ability to recruit and retain desir-
able students and faculty. Similarly, an important purpose of a corporate
pension plan is to maintain competitiveness for recruiting and retaining
desirable employees relative to similar firms. If equity investment volatil-
ity affects all competing institutions similarly, there may be little change
in the ability of the intermediary to remain competitive and little liability-
relative risk for investing in equities.

The notion of an “economic” liability is increasingly accepted as the
appropriate definition for defining liability-relative risk. The term eco-
nomic is used to highlight the substantive differences that typically exist
between economic and actuarial models of liabilities. The critical step in
implementing the methods of Chapter 9 is to define an appropriate model
of period-by-period changes in the capital value of fund obligations as a
baseline return for each asset. After that, investment policy benchmark
optimization is relatively straightforward. The economic liability returns
form the basis of the benchmark-relative optimization parameter inputs
and computation of efficient frontier portfolios.

ENDOWMENT FUND INVESTMENT POLICY

An endowment fund’s investment objective is sometimes defined as
maintaining purchasing power over time. Meeting the inflation rate is
a simple and convenient interpretation of the fund’s obligations. In this
case, the historical inflation rate may be the benchmark-relative liability
return in each period.” An often more thoughtful alternative is to define
the fund'’s obligations in terms of maintaining a college’s competitiveness

5. Maintaining purchasing power over time is often useful for defining funding liabilities for many
financial intermediaries.
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among schools of similar character with respect to attracting students
and teachers. For example, a given fund may serve as a vehicle for finan-
cing student aid. For this fund, an appropriate economic liability model of
benchmark return may include historic changes in student costs, includ-
ing tuition, fees, and living expenses. The size of the fund and the needs
of the school relative to competitors are also important considerations.

PENSION LIABILITIES AND BENCHMARK OPTIMIZATION

For many fund trustees and consultants, pension plan liabilities are inex-
tricably associated with actuarial estimation methods. To the extent that
economic liability benchmark optimization is a universal framework for
defining investment policy, it must be applicable to defined benefit (DB)
pension plans. The rest of this chapter explains how benchmark-relative
optimization with economic liability modeling can be applied to defin-
ing investment policy for DB pension plans. In the process, the economic
nature of DB pension plan liabilities is addressed, a topic of substantial
interest to many investors. Some limitations of actuarial methods for
defining investment policy are also covered.

LIMITATIONS OF ACTUARIAL LIABILITY ESTIMATION

The reader may be surprised to know that pension liability estimation is
not the primary focus of DB pension plan actuarial estimation. Instead,
the objective of the process is to estimate required plan contributions for
the orderly funding of current and emerging plan obligations over time.
In many cases, the DB plan corporate funding objective is to maintain
pension costs as a fixed percentage, such as 3%, of payroll. Actuarial pen-
sion liabilities are simply constructs within the actuarial process for esti-
mating plan contributions.

Many actuarial assumptions are economically unrealistic. Actuarial
pension liabilities can be made larger or smaller depending on corporate
funding needs and objectives, including whether the corporation prefers
to pay benefits now or later. Misperceptions of liability risk, including the
illusion of minimal period-by-period variability, are associated with the
smoothing methods intrinsic to the actuarial estimation process and the
tradition of occasional in-depth actuarial valuations. Misperceptions of
liability risk resulting from the actuarial valuation process by financial
analysts are responsible for many abuses associated with plan funding
and are a primary factor in the demise of many DB pension plans.

For financial planning purposes, actuarial methods may be useful pri-
marily for approximating the current capital value of plan benefits and
funding status. Current funding status may be important for defining
investment policy, particularly when plan underfunding is significant
and plan termination is a serious consideration. Actuarial methods have
severe limitations for reflecting pension liability risk.
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Economic pension liability models depend on an understanding of
the economic nature of pension plan obligations, particularly their role in
maintaining corporate competitiveness. The variability of pension liabil-
ities depends primarily on economic factors that are largely outside the
scope of actuarial methods. A key to understanding the risks of pension
liabilities is to recognize that there are two types of pension liabilities:
current or accrued and future or expected. For defining investment policy,
pension liability risk dominates the investment policy decision.

CURRENT PENSION LIABILITIES

Plan termination obligations are a first-order consideration for many plan
sponsors. This is because plan termination is often a significant corporate
consideration, particularly if the firm is in financial distress. Under U.S.
law, vested pension benefits are financial obligations of the plan and of
the firm, whether or not the plan terminates. The accrued benefit obliga-
tion (ABO) defines the capital value at market interest rates associated
with plan termination benefits.

Plan termination liabilities are associated with retirees and the vested
benefits of current employees. Assume a current employee with 10 years
of vested service and 10 years to retirement. If plan termination occurs,
the plan has the financial obligation to pay the accumulated plan bene-
fits associated with 10 years of service and current final average sal-
ary 10 years from now. The promised benefit in this case is similar to a
long-term bond with a delayed first payment period. The plan benefits
for retirees have no delay in payment period. The benefit payments of
accrued or current plan obligations under plan termination are highly
predictable cash flows derivable from mortality tables. Such liabilities are
primarily interest rate sensitive and financially similar to a portfolio of
short- and long-term bonds.

TOTAL AND VARIABLE PENSION LIABILITIES

Suppose that the firm is ongoing and plan termination is not a significant
consideration. In this case, there are additional plan liabilities. Consider
again the vested employee with 10 years of service and 10 years until
retirement. Suppose that the employee remains with the firm until retire-
ment. In this case the employee’s 10 years of current service is associ-
ated with a pension benefit that depends on final average pay 10 years
from now. The capital value of a benefit that depends on final average
pay 10 years from now is likely to be significantly greater than the plan
benefit evaluated with current final average pay. Consequently, the value
of funds that are required to consider the plan fully funded for all the
promised benefits, current and likely, may be much larger than that asso-
ciated with plan termination. Because the purpose of the pension fund
is to assist the firm in providing orderly funding of plan benefits, proper
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planning includes estimation of expected or emerging benefits associ-
ated with the ongoing functioning of the plan. The capital value of the
difference between termination and total liabilities may be significant,
especially for senior officers of the firm.

Define the estimated capital value at a given point in time of all cur-
rent and expected plan benefits as the total benefit obligation (TBO) of
the pension plan. It is convenient to define the variable benefit obligation
(VBO) of the pension plan as the difference between the TBO and ABO:

VBO=TBO — ABO.

The VBO is the expected pension benefit component of total pension
liability. Estimates of required funding levels and considerations of the
risk characteristics of pension obligations often ignore the VBO.

ECONOMIC SIGNIFICANCE OF VARIABLE LIABILITIES

Is the VBO a significant portion of the total pension obligation? For com-
panies in mature industries, the VBO may be a relatively minor portion
of total plan obligations. This is because most pension obligations may
be associated with employees near or at retirement. On the other hand,
for fast-growing companies, the VBO may be the dominant portion of
plan liabilities. One estimate is that the VBO is typically 70% of the ABO
(Michaud, 1989c).

A plan sponsor has the option of terminating the pension plan. Does
this make VBO liabilities unimportant? In plan termination, the VBO has
zero capital value by definition, and the TBO equals the ABO. Conse-
quently, the view may be that only assets for funding ABO liabilities are
required. Such arguments ignore some fundamental economic truths.

By definition, a pension plan is deferred wages. The pension plan is
part of the total wage and fringe benefit package associated with employ-
ment at the firm. Terminating the pension plan implies a reduction in
total compensation paid by the firm to its employees. A firm that termin-
ates the plan and wants to remain in business will have to be competitive
for human capital. In equilibrium, this means that the firm has to pay
equivalent capital value of terminated benefits either in current wages or
some alternative employee benefit. Consequently, there is no economic
benefit to the firm purely from plan termination.

In practice firms terminate their DB pension plan and replace it with a
defined contribution (DC) pension benefit. One reason for doing so is that
DC plans are less expensive. However, the firm may also have to deal with
poor employee morale if perceptions of significant diminished total com-
pensation are prevalent. A significant economic disadvantage attaches to
plan termination for the ongoing firm. Up to a limit defined by U.S. law,
plan contributions are tax advantaged. By terminating the plan the firm
may give up an economic benefit that may cost significantly more than its
equivalent capital value in total compensation to employees.
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Plan termination makes economic sense primarily in the context of
substantial financial distress or significant concern for the firm’s viability.
In this case, the economic value of terminating the plan may be worth
the likely near-term decrease in competitiveness for human capital or
longer-term increase in total compensation required. For a competitive
ongoing firm, the VBO is very much an economic reality, whether or not
the plan terminates. Proper investment policy planning requires consid-
eration of both components of total plan liabilities. Contrary to popular
perceptions, in the light of tax implications, a DB pension plan is not a
corporate liability but a U.S. government-sponsored asset for promoting
corporate competitiveness.

ECONOMIC CHARACTERISTICS OF VBO LIABILITIES

The economic risk characteristics of VBO liabilities are generally very
different from the ABO. ABO liabilities have fixed-income risk character-
istics that are highly sensitive to interest rates. In contrast, VBO liabilities
may often have equity risk characteristics and may not be particularly
interest rate sensitive (Michaud, 1989b). These fundamental differences
have important implications for defining an appropriate DB pension plan
investment policy.

VBO risk is associated with the business risks of the firm and its
ability to grow and compete for markets and human capital over time.
Unexpected changes in VBO liabilities and the firm's payroll are closely
associated. Unexpected economic factors that positively affect firm growth
are likely to lead to a lower withdrawal rate, larger-than-anticipated sal-
ary increases, and unanticipated increases in the workforce, leading to an
unexpected increase in firm payroll and VBO liability. Conversely, unex-
pected economic factors that adversely affect firm growth are likely to
have the opposite impact on withdrawal rates and salary and workforce
growth, leading to an unexpected decrease in payroll and VBO liability.
Consequently, VBO risk is closely linked to regional, national, and global
economic risk factors. In some cases, VBO risk may be highly correlated
with domestic and global equity market returns and largely unrelated to
interest rate risk.®

The implications of modeling pension liability risk with economic risk
factors can have a dramatic impact on defining investment policy. For
example, a VBO with equity risk characteristics may imply that a well-
diversified equity portfolio is the low-risk asset allocation of choice, a sig-
nificant inversion of many conventional perceptions.” Local and global

6. Michaud (1989b) provides an example.

7. Note that this conclusion is impossible with actuarial liability methods, where the rationalization for
equities rests on presumed long-term return benefits as opposed to period-by-period risk characteris-
tics. The example provides further illustration of critical limitations of actuarial methods and standard
asset and liability management (ALM) frameworks for defining investment policy.
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economic risk factors that affect variable liabilities are often very different
from those that affect fixed cash flow securities.

AN EXAMPLE: ECONOMIC LIABILITY PENSION INVESTMENT POLICY

Defining investment policy for a DB pension plan typically involves
extensive investigation into the nature of the firm's business risks, the
level of current plan liabilities, and the thoughtful use of historic asset
returns and economic data. The following discussion provides a very
simple example of the benchmark-relative economic liability optimiza-
tion framework for defining DB pension plan investment policy.

Suppose that the total pension plan liability consists of 60% ABO and
40% VBO and that the plan is fully funded.® Also, assume that U.S. bond
returns model the ABO, and U.S. equity returns model the VBO. Finally,
suppose that the historic period and asset return data of the base case in
Tables 2.3 and 2.4 reflect an appropriate scenario for examining invest-
ment policy.

According to a 60% bond and 40% equity liability model, Euro and U.S.
bonds as well as Canadian equities have a negative benchmark-relative
return for the base case data. Referring to the index-relative discussion in

Table 10.1 Benchmark-Relative Constraint Priors

Euro us Canada France Germany  Japan UK us
Bonds  Bonds
Min %0 0% 0% 0% 0% 0% 0% 40%
Max 0% 60% 0% 100% 100% 100%  100%  100%
6 -

Estimated average return (%)
w

o

0 5 10 15 20 25
Standard deviation (%)

Exhibit 10.1 Liability-Relative MV and RE Frontiers

8. Full funding here means that the capital value of the fund equals the TBO. See Michaud (1989) for
benchmark optimization under more general funding assumptions.
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Exhibit 10.2 Liability-Relative MV and RE Optimal Composition Maps

Chapter 9 and Table 9.2, the RE optimization constraint priors associated
with a 40/60 U.S. stock/bond benchmark are given in Table 10.1.

Exhibit 10.1 compares the liability-relative MV efficient portfolios to
RE optimized portfolios with Table 10.1 constraint priors. The left-hand
panel of Exhibit 10.2 provides the MV liability-relative efficient frontier
composition map; the right-hand panel displays the RE liability-relative
Table 10.1 constraint priors composition map. In-sample, the MV efficient
frontier portfolios reflect higher potential of return and wider range of
risk than the REL. The composition maps reflect a very different view of
liability-relative portfolio optimality.

Exhibit 10.3 provides the results on average of investment period simu-
lation performance associated with a liability-relative truth represented
by the MV efficient frontier in Exhibit 10.1. The results show that the
out-of-sample performance of the RE optimal liability-relative constraint
prior optimized portfolios outperforms their associated liability-relative
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Exhibit 10.3 Liability-Relative MV and RE Performance
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MV optimized portfolios by a wide margin. RE optimization, properly
implemented, has the potential for dramatic improvement of optimized
portfolio performance as well as redefining liability-relative optimality.

PAST AND FUTURE OF DEFINED BENEFIT PENSION PLANS

DB pension plans are rapidly disappearing and being converted to DC
pension plans. DC plans imply lower contributions for the firm as well
as transfer responsibility of fund investment performance to employees
and retirees. Given the need to be competitive globally,a DC plan may be
a competitive necessity for many firms. Employees are disadvantaged in
that DC plans are unlikely to provide similar DB plan benefit levels, nor
will they be able to rely on any specific level of benefits of lifetime income
and legacies. However, employees find DC plans desirable because bene-
fits are portable. Few employees expect lifetime employment from corpor-
ations today. Plan terminations often occur in mergers and acquisitions.
Funding inadequacies that lead to distress plan terminations by the
Pension Benefit Guarantee Corporation (PBGC) typically result in a frac-
tion of promised benefits to plan participants. For many, 50% of some-
thing is preferable to 100% of nothing.

The objective of the 2006 Pension Protection Act (PPA) is to provide
more incentives for maintaining adequate funding of DB pension plans.
However, many consider the act too little too late. The likely demise of
most DB pension plans due to funding inadequacies is unfortunate since
many participants would be better off covered by responsible manage-
ment of a DB pension plan in retirement. Funding inadequacies can often
be traced to two common errors that were in many cases avoidable: devi-
ations from planned actuarial contributions and exotic investment man-
agement. The actuarial estimation process assumes a fixed percentage
of payroll for funding across the lifetime of the fund. Given reasonable
functioning of capital markets and firm viability, corporate funding at
the assumed actuarial rate was often likely to meet short- and long-term
needs of the plan for the life of the firm. It was also a sensible way to plan
for pension expense. Note that a fixed percentage of payroll contribution
policy is desighed to manage the VBO as well as ABO of the plan over
the lifetime of the fund. Under the actuarial assumptions, a conventional
stock/bond asset mix of diversified low-cost domestic and international
stocks and bonds with risk level optimized with respect to the business
risks of the firm and maturity of the workforce would have been likely to
adequately fund the plan. Attempts to improve investment performance
typically included more risky investments that added unnecessary vola-
tility in many cases to pension funding.

Prior to the 1974 Employees Retirement Income Security Act (ERISA),
pension benefits relied on the goodwill of the corporation. Pension plans
were often administered as a part-time activity by relatively low-level
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corporate officers. Plan termination bore little economic disincentive
apart from declining employee morale and productivity. ERISA trans-
formed pension benefits into a tax lien of the firm with required con-
tributions. Pension trustees were now responsible for real commitments
and costs. Pension expense had to be managed as any other expense of
the firm.

With ERISA, corporate contributions were mandated expenses that
could affect earnings and stock valuation. Under the guise of invest-
ment efficiency, investment banks and pension consultants courted pen-
sion plan trustees with various generally riskier investment strategies
with the goal of pension cost reduction. The critical link between payroll
and pension costs was severed. Due to the large sums of money often
involved, pension trustees became Wall Street celebrities and in turn
were often courted by finance and entertainment celebrities. Introduc-
ing sophisticated investment strategies (with attendant legal and Wall
Street fees) promised lower contributions and better firm earnings that
enhanced the importance of plan trustees in the corporation. Funding
holidays were seen as desirable goals. Various termination strategies
were promoted as ways of making the corporation more globally com-
petitive. Unions demanding benefit improvements whenever the fortunes
of the plan turned unexpectedly positive served to reinforce the sense
that thoughtful pension administration was self-defeating. Unions were
unlikely to propose rolling back benefit improvements when the plan
was in distress.

DB plans have borne much abuse by many involved in plan funding
management. Patriarchal management is no longer fashionable in Ameri-
can corporate culture. Firms need to be globally competitive in ways that
were unnecessary in earlier times. As a consequence, a DC pension plan
is likely to be the retirement benefit framework of choice for most corpor-
ations and employees in the future. Some important factors are emerging to
support the viability of DC plans for participants. These include enhanced
access to professional asset management and improved availability of
institutional-quality retirement planning tools. American firms and their
employees may ultimately be better off leaving responsibility for pension
benefits to employees customized to lifestyle needs and objectives.

CONCLUSION

Economic liability-relative RE optimization, performed appropriately,
is often a significant tool for enhancing the value of investment policy
studies. In spite of its simplicity, the example indicates that a benchmark-
relative RE optimized economic liability framework may substantially
enhance the investment value of MV optimization.

As a practical matter, economic liability risk modeling may not be a
simple process. Most critically, it may often require abandoning basic
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misconceptions of funding and plan liability risk. The key to the success
of the procedure is to define a relevant and appropriate economic liabil-
ity model of total fund liabilities. On the positive side, fund trustees and
corporate officers often find an economic liability approach to investment
policy planning an attractive and institutionally meaningful process.

Many applications of economic liability modeling remain to be devel-
oped. Many issues are open, and extensive research is required to solve
specific applications.
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Bayes and Active Return Estimation

Active asset managers have views of the returns and risks of assets and
capital markets that are an integral part of their investment process.
Risk-return estimates in a portfolio optimization are typically a combin-
ation of current and historical information. Active equity management
depends on estimates of alpha—risk-adjusted excess return relative to
a benchmark index—that reflect the expertise, strategy, market outlook,
and resources of the firm. Tactical asset allocation managers employ a
variety of methods to estimate market and asset returns. Strategic or
long-term asset allocators use historic return data informed with cur-
rent information to develop strategies and policies. By adding exogenous
views, investment managers act as Bayesian agents improving the fore-
cast value of historically estimated optimization inputs.

While asset managers are natural Bayesians, few use formal Bayesian
procedures for including views in optimization estimates. Typically,
exogenous views simply replace some or all of historically estimated
inputs. This chapter presents a simple yet effective and rigorous frame-
work for integrating exogenous estimates of returns in portfolio optimi-
zation inputs. A properly used Bayesian framework has the potential to
significantly improve the investment value of optimized portfolios in
practice. Bayesian estimates provide a useful framework to further explore
the relative importance of enhanced optimization versus enhanced risk-
return estimates in optimized portfolio performance.
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CURRENT PRACTICES

Historic return data similar to those described in Chapter 2 are often the
starting point for risk-return estimates in an asset allocation.! However,
in actual practice, managers often replace historical average returns with
exogenous estimates based on current views of markets and assets. This
is because they view historically estimated returns as generally unreli-
able. Similarly, equity portfolio managers typically use a commercial
equity risk measurement service to estimate the components of portfolio
risk and employ a separate process for estimating return or alpha.

The practice of disconnecting return from risk estimation has import-
ant investment limitations. Ad hoc return estimates are often inconsistent
with historic asset variability and interrelationships represented by esti-
mated correlations. In addition, simply replacing historic average returns
with ad hoc returns ignores the reliability of exogenous estimates.?

BAYES PRINCIPLES

A Bayes procedure is essentially a conditional probability statement. To
illustrate, in a deck of playing cards the probability of randomly choos-
ing a heart is one fourth. However, if we happen to know that the card
drawn is a red card, the additional information improves the probability
of choosing a heart to one half. In the same way, reliable exogenous invest-
ment information not reflected in historic data may be used to increase
the accuracy of risk-return estimates. A Bayes procedure is designed to
summarize probabilistically two independent sources of information
relative to one future event.

THE BAYES RETURN FORMULA

A formula for computing a Bayes estimate for return is given in (11.1). In
the formula the mean returns are vectors and variances are covariance
malfrices:

Bayes Mean=Bu+(I—-B)y (11.1)

1. Statistical procedures that enhance the investment value of the historic data, such as the Stein
methods in Chapter 8, may be part of the process.

2. This disconnect exists widely in equity portfolio optimization practice, where alpha is an internal
estimation process while risk comes from a commercial service. However, in the equity optimization
case, a Bayesian process that connects risk and return in an integrated framework has many chal-
lenges. Risk estimation is a serious data management problem. In addition, the components of risk
are not always investment return intuitive. Equity alpha estimation is in itself a very difficult prob-
lem. The technology for integrating risk and return for large stock indices remains an elusive ideal for
many institutions. At the current state of asset management technology, Bayes estimation may be most
relevant for asset allocation and stock alpha estimation.

3. Carlin and Louis (1992, p. 22). The formula assumes multivariate normal distributions.
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Where

p=historic estimated mean returns

y =exogenous estimates views

%, =historic return estimated covariances

I =exogenous views covariances?

[=identity matrix

B:Zl—: (Z;‘]+Z:.1 )—1
The formula is simple to interpret. The Bayes or mixed mean estimate
(11.1) of return represents a weighted average of what we observe (u) and
what we forecast (y). It is weighted by the percentage of the total variance
B explained by the historic data.

This formula is a simple generalization of Theil and Goldberger (1961).5
In our formulation of the Bayes mean, you need use only the views of
any asset you have at the level of certainty you have. This Bayes for-
mula allows for Stein estimation or other statistical procedures for refin-
ing the forecast value of historically estimated data. It allows for linear
constrained MV and RE optimization for any choice of risk along the
frontier.t

There are many sources of information and methods that asset man-
agers may use to develop views for input into a Bayesian mean mixed
estimation process. These include empirical and theoretical principles
of finance, current business and economic data, recent regulatory and
political and socioeconomic events, and various econometric forecasting
methods. Indeed, a Bayesian estimation process defines a Bayes panel
that can comprehensively represent the firm's investment process at a
particular moment.

A BAYES PANEL ILLUSTRATION

To illustrate the Bayes return estimation process, assume investment com-
mittee estimates of future return at 9% for France and 8% for Japan. The
committee associates a level of certainty or range of variation (standard
deviation) of 15% for its estimates. The committee expresses no other views
apart from those given by the historic data. A lack of an exogenous view
for an asset is indicated by a certainty level (standard deviation) of 999%.

4. The variances or diagonal elements in I, reflect the level of reliability of the exogenous return
estimates. The off-diagonal elements are covariances that are often based on historically estimated
correlations due to the difficulty of reliable exogenous estimation.

5. See Theil (1971) for an authoritative and comprehensive discussion.

6. The Bayes formula (11.1} is the same as used in Black and Litterman (1992). However, the implemen-
tation of the formula in the text is free of the restricting assumptions in Black-Litterman. Their frame-
work—unbounded MV optimization—inherits the Jobson and Korkie out-of-sample performance
limitations and is unsuitable for linear-constrained MV and RE optimization. In addition, the proced-
ure requires identification of the equilibrium market portfolio and risk premium, which is unneces-
sary in our formulation.
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Table 11.1 Bayes Panel for Estimating Return

Asset Names Historic Data Views Bayes Results
Avg Return Std Dev Return Certainty
Euro Bonds 3.2% 5.4% 0.0% 999.0% 3.1%
US Bonds 3.0% 7.0% 0.0% 999.0% 2.9%
Canada 4.6% 19.0% 0.0% 999.0% 4.1%
France 10.5% 24.4% 9.0% 15.0% 9.3%
Germany 6.4% 21.5% 0.0% 999.0% 5.5%
Japan 10.5% 24 4% 8.0% 15.0% 8.6%
UK 9.5% 20.8% 0.0% 999.0% 8.7%
us 8.5% 14.9% 0.0% 999.0% 8.2%

Table 11.1 displays the Bayes return estimates from formula (11.1) given
our assumptions. Columns 2 and 3 repeat the CPl-adjusted annualized
average returns and standard deviations for the base case data in Tables
2.3 and 2.4 for the indicated assets. Column 4 displays the future return
views for France and Japan and column 5 the associated level of certainty.
Column 6 provides the formula (11.1) Bayesian mixed estimate return for
each asset class.

Reviewing the results in Table 11.1, it is not surprising to see that the
Bayesian estimates for France and Japan are lower and closer to the com-
mittee’s views than the historically estimated returns. What is interesting
is how the returns of the other assets react to the new information. While
the returns are all lower than historic, some are much lower than others
on a relative basis. Apart from the bonds, the U.S. is little affected by the
committee’s lower return estimate for global assets. This is because the
U.S. market is least correlated with Europe and Japan.

The RE optimized portfolios change as well with the new rates of
return. Exhibit 11.1 presents the composition map of the RE optimized
portfolios constructed with the Bayes estimates of return in Table 11.1.
Compare the portfolios to the RE composition map in Exhibit 6.3. As risk
increases, the changes in the return estimates become more prominent.
In particular, using the Bayes estimates dictates that Japan has a less
dominant role while U.S. equities have a larger one.

BAYESIAN MIXED ESTIMATION ISSUES

The hallmark of the Bayes procedure presented here is flexibility. Reliabil-
ity levels provide the investment committee with a great deal of control
of the results, from reflecting largely the historic-based return estimates
to largely the return forecasts. The analyst soon comes to appreciate the
interaction of reliability level and historic interrelationships for designing
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Exhibit 11.1 RE Optimal Composition Map, Bayes Panel Return Estimates

the optimization inputs and obtaining maximum benefit from the fore-
casts consistent with beliefs.

The reader may find the asset allocation mixed estimation results in
Table 11.1 obvious and largely anticipatable. However, the process is often
a world away from the ad hoc return procedures and resulting MV asset
allocations prevalent in the investment community today. The results in
Exhibit 11.1 do not differ drastically from the original efficient frontier
in spite of the influence of the forecasts, in no small measure due to the
stability of the RE optimization process. In contrast, ad hoc procedures
for developing return forecasts often lead to dramatically different clas-
sically optimized portfolios. Mixed estimation with RE optimization is
likely to have a first-order impact on the stability and investment benefit
of optimized asset allocations.”

Why do so few managers use a rigorous Bayesian estimation frame-
work? The difficulties emerge when attempting to implement the process
in actual practice.

In the Bayesian framework of (11.1), exogenous views are assumed
independent of historically estimated data. In practice, the independence
requirement is difficult to satisfy. Manager views are often strongly influ-
enced by recent market and economic history. In addition, the reliability
of the manager’s views must be determined in some way. Also, a Bayes-
ian framework does not eliminate the need for conditioning historic
return data appropriately or estimating risk.

7. It should not be surprising to note that more complex formulas also exist.
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Properly understood, the Bayes panel in Exhibit 11.1 emerges as noth-
ing less than a complete, rigorous description of a professional
manager’s investment process. Various investment strategies and invest-
ment mandates can be accommodated within the context of a Bayes
panel. Consequently, the level of difficulty associated with a Bayes panel
is no more than a reflection of the demands of a rigorous framework for
codifying an investment strategy.

A cautionary note: Although the mixed estimation process is very
flexible, it is also prone to user error. Successful implementation often
requires experience and patience with the procedure as well as signifi-
cant attention to detail.

ENHANCED INPUTS OR ENHANCED OPTIMIZER

Asset managers typically devote a great deal of their resources to improv-
ing risk-return estimates in an effort to improve optimized portfolio per-
formance. As previously shown, RE optimization is another route for
improved portfolio performance. Is improved estimation more important
than improved optimization?

Markowitz and Usmen (2003) address the issue of the relative import-
ance of improved inputs and classical efficiency versus RE optimization.
They develop a sophisticated diffuse Bayesian procedure to enhance
risk-return estimation. Using the simulation test framework laid out in
Chapter 6, they compare the performance of their Bayes-enhanced risk-
return estimates with MV optimization to RE optimization with unenhanced
risk-return estimates. They were surprised to find that the RE optimized
portfolios without Bayesian enhanced risk-return estimates exhibited super-
ior performance on average and in every one of their 30 individual tests.

A replication of the Markowitz-Usmen test using James-Stein estima-
tion as a substitute for their more sophisticated Bayesian procedure found
similar results. Exhibit 11.2 displays the indicated in-sample {dotted) and
out-of-sample (solid) MV and RE frontiers from the simulation test. For
reference, the “true” MV efficient frontier is the middle solid frontier and
in-sample MV efficiency without James-Stein is plotted as the top dot-
ted curve. The in-sample James-Stein MV efficient frontier has been cali-
brated to provide a useful estimate of the true MV efficient frontier.®

The in-sample MV efficient frontier with James-Stein estimation is
much closer to the true MV efficient frontier than the frontier without
James-Stein. This result is consistent with expectations and contrasts with
the relatively poor estimate of the true MV frontier by the in-sample REF.

8. All simulations in Exhibit 11.2 are based on 10 years of monthly simulated (120) returns from Michaud
(1998) risk-return estimates. The number of simulated returns was used to provide a good estimate of
the James-Stein MV efficient frontier estimate relative to the true efficient frontier. The results also use
the Ledoit (1997) estimate of the covariance matrix. Eighteen years of simulated monthly returns used
in other studies in this report would not have provided a good James-Stein MV frontier estimate.
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However, consistent with Markowitz and Usmen (2003), unenhanced esti-
mated REF dominates out-of-sample performance. Superior optimization
dominates superior estimation in the investment period.

The dramatic Markowitz-Usmen results and those of Exhibit 11.2 may
appear to defy investment intuition but in fact are easy to explain. MV
optimization always assumes unrealistic accuracy of investment infor-
mation (16 decimal places) independent of the quality of the estimates.
This level of accuracy is inconsistent with information in investment
practice. As a result, classical optimization always overuses investment
information and creates extreme portfolios that typically perform poorly
in practice whatever the quality of the information. Harvey et al. (2003)
characterize the Michaud optimization resampling approach as changing
the order of Bayesian integration. The Markowitz-Usmen and our results
indicate that order of integration may be nontrivially important.

BAYESIAN CAVEATS

Formal Bayesian methodologies have an important limitation. Bayesian
estimation is not always a better procedure; a perverse prior may lead
to poorer, not better, estimates. Avoiding a perverse prior is the reason
why Markowitz and Usmen (2003) use a diffuse prior in their estimation
process.’ The perverse Bayes prior problem is a major concern in statisti-
cal estimation theory. Efron (2005), in his American Statistical Associa-
tion presidential address, advocates “empirical Bayes” methods to avoid

9. Harvey et al. (2003) claim to improve on the Markowitz/Usmen/Bayes estimation procedure by
including higher moments. Their results, however, are not in the Levy-Markowitz (1979) framework
assumed in this book or used by most practitioners. Moreover, they note that their results are aimed
at improved in-sample expected utility rather than out-of-sample risk-adjusted performance, as in
Markowitz-Usmen and Chapter 6 of this book. While we do not dispute their in-sample results, our
focus is on out-of-sample investment performance.
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the effects of a perverse prior in Bayesian analysis while attempting to
retain its improvement of statistical estimation power. The resampling
and bootstrap methods Efron advocates conceptually resemble RE opti-
mization. Given that there is always some uncertainty of risk and return
estimates, properly managed, RE optimization is always a recommend-
able procedure for improving performance on average.

While it is interesting to compare the relative value of statistically
improved inputs versus RE optimization, the procedures may be
complementary rather than exclusive. Procedures for improving the fore-
cast value of estimates are often worthwhile. Bayesian methods consis-
tent with financial priors can often be recommended for improving RE
optimization.



12

Avoiding Optimization Errors

Optimizers are useful for assigning airport gates, computing lunar-
trajectories, and routing telephone calls, as well as optimizing portfolios.
Therefore, it should not be surprising that an optimizer requires a great
deal of information specific to the investment process if it is going to find
investment-relevant portfolios. The operating principle for defining an
optimization is that more information is better than less as long as it is
reliable and consistent.

Several procedures, developed largely from institutional experience,
are useful for enhancing the investment value of an optimization. Most
apply to equity portfolio optimization.

SCALING INPUTS

Improperly scaled inputs are a major source of errors made in formulat-
ing an optimization. In an equity portfolio optimization, there are three
basic classes of security inputs: expected returns, trading costs, and risk
estimates. In the many cases when the input units are not comparable,
optimization results are unlikely to have investment value.

Institutional forecasts of stock returns are generally relative valu-
ations or rankings of stock values.! Relative valuations need scaling in
order to be useful as inputs to most optimizers. The appropriate scaling

1. Forecasts of expected returns might be relative valuations even when they resemble actual returns.
For example, Michaud and Davis (1982) show that dividend discount model returns may only have
ordinal or stock ranking information.
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transforms the return forecast into the “return on average associated with
the forecast.” Proper scaling of return forecasts allows comparability with
trading costs, risk estimates, and other inputs in the optimization.?

The scaling formula is the product of two quantities:

1. The assumed level of information or correlation between the
forecast and ex post return
2. The expected volatility or standard deviation of ex post returns.

The first quantity is the information correlation or coefficient (IC) of
the forecast. The IC and expected volatility may vary by market, sector,
industry, and analyst.

The scaling formula for forecast returns has an important subtlety that
has often led to error. In many cases, the two components of the scaling
formula are inversely related. For example, the IC of a forecast for util-
ity stocks may be higher than for growth stocks, but the level of ex ante
volatility may be less. Consequently, the product or scale factor for utility
stock forecasts may not differ significantly from that for growth stocks.

Although stock return forecasts are often given in monthly return
units, some commercial risk estimate services are provided in weekly
units. Inconsistent risk and return units may have a negative impact on
the optimization. In some commercial optimizers, the optimized port-
folio depends on the values of the parameters of a quadratic “utility” or
“risk aversion” function.® In this case, the units of the returns and risk
estimates affect the solution. However, most commercial services also
include an option to define optimality in terms of tracking error. Track-
ing error-defined optimality is less problematic because it allows the user
to ignore risk model units*

The manager must also properly scale expected returns relative to
trading cost estimates.® Trading costs generally vary by market, holding

2. Ambachtsheer (1977) pioneered the development of the scaling formula for forecast returns.
Michaud (1989a, appendix, pp. 40-41} generalized the scaling process and developed some of its prop-
erties using a linear regression framework. [n some cases, a more general regression framework may
be appropriate.

3. An optimizer may define a single optimal portfolio on the efficient frontier based on preset values
of quadratic “utility function” parameters that define the relative importance of portfolio risk and
expected return. One problem is that the choice of default values of the utility parameters may not
be appropriate for a given investor. Another preblem is that the parameters may have little intuitive
investment meaning. In addition, the default values may obscure limitations of the optimizer or risk
model. For example, default parameters may be set to choose efficient portfolios near the top of the effi-
cient frontier. The optimizer, in this case, may do little more than find large expected return portfolios.
Often, a more meaningful objective is to define an optimal portfolio in terms of the desired level of
risk. For optimizers defined by utility function parameters, the manager can compute efficient port-
folios with desired risk levels by varying parameter values

4. By allowing the specification of portfolio residual risk directly, a properly formulated stock portfolio
optimizer operates independently of the scaling of the risk estimates relative to the return inputs and
trading costs.

5. The three components of total trading costs are fees (including taxes), market impact, and oppor-
tunity. The careful estimation of all three components of trading costs is a critical element in the likely
investment success of a portfolio optimization.
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period, investment style, and asset class. For example, a value strategy
may have a much lower portfolio turnover rate than a growth stock strat-
egy. In this case, the average turnover rate may affect the relative scaling
of return forecasts to trading costs.

Although the effort may be significant, proper scaling of all optimiza-
tion inputs is essential. Poorly scaled optimizations usually generate
investment-irrelevant optimized portfolios.

FINANCIAL REALITY

It seems obvious to insist that optimization inputs are consistent with
financial reality, yet in many cases optimization inputs do not make
investment sense.

A surprisingly common error concerns active return or alpha fore-
casts. By definition, the index-weighted sum of active returns must equal
zero; in investment terms, an index can never beat itself. Yet institutional
active returns often do not satisfy this necessary condition. Consequently,
the optimization may have little investment value. Note that the index-
weighted sum constraint is often useful for conditioning historic regres-
sions for forecasting returns.

LIQUIDITY FACTORS

For a large trust department or mutual fund portfolio, or for a small-
capitalization stock portfolio, the capital value of the fund may be signifi-
cant in terms of the percentage of a security’s outstanding market value.
For example, a 1% change in a holding may represent a large amount of
capital relative to the size of the firm. Such considerations are related to
trading cost, where the trading cost function depends on portfolio size
and is nonlinear. This is an example of the inherent position-dependent
character of portfolio optimization.

A related issue is liquidity and capitalization in asset allocation. Coun-
try equity and fixed income markets may differ significantly in size and
liquidity. An MV asset allocation that does not consider relative liquidity
and size may lead to irrelevant portfolios. Some methods for considering
such factors include nonlinear trading cost or quadratic constraints.

An implementation liquidity issue has to do with optimized “nuis-
ance” portfolio weights. Conceptually, an RE optimized portfolio has
a non-zero weight for all assets in the universe. While consistent with
financial theory, in practice many assets may have economically unin-
vestable allocations. Investability depends on many factors, including the
character of information and the state of the market. Three conditions
are useful for transforming an optimal portfolio into an investable one:
cardinality, threshold, and increments. Cardinality defines the number
of assets desired in the investable portfolio. Threshold defines the mini-
mum size portfolio weight desirable for investment. Increment defines an
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additive unit for investment. The authors have found post optimization
of RE optimized portfolios with mixed integer best approximation tech-
nology very helpful in defining investable portfolios.

PRACTICAL CONSTRAINT ISSUES

Institutional portfolio optimizations often include many kinds of con-
straints. Sector and industry membership constraints are a simple way
to control portfolio risk. Constraints may reflect investment strategy or
market outlook information that is exogenous to return forecasts. Con-
straints may be useful for imposing quality controls on the portfolio
management process. Constraints are also useful for controlling portfolio
structure and avoiding inadvertent risk exposures. When no information
is available, it is often useful to keep factor and group exposures close to
index weights. The downside of portfolio constraints is that they can lead
to significant opportunity costs on investment performance if not prop-
erly used. Overconstrained portfolios may be substantially riskier out-
of-sample than they appear.®

The large number of constraints in many institutional portfolio opti-
mizations has evolved from hard-earned investment experience. Invest-
ment practice may often reflect the historic need to overcome the many
limitations of current MV portfolio optimizers and equity risk models.
However, an informed statistical view of portfolio optimization may
reduce the need for many constraints and the opportunity costs and risks
associated with overconstrained portfolios.

BIASED PORTFOLIO CHARACTERISTICS

As a general principle, any optimized portfolio characteristic is biased
because estimation error accumulates in the optimization objective func-
tion. One important example is that the risk of an optimized portfolio is
a downward-biased estimate of its true value. This means that the out-
of-sample risk of an optimized portfolio is likely to be larger than that
estimated by the risk model and the optimization. One method of evalu-
ating the unbiased risk of an optimized portfolio is to subscribe to two
competent risk measurement services. The recommended procedure is
to optimize the portfolio with one risk model and evaluate portfolio risk
with the other. Although it is not foolproof, the two-risk measurement
method can help to realistically estimate out-of-sample portfolio risk.
The same bias is present for any other optimized portfolio character-
istic. For example, a manager may want to maximize dividend yield or
minimize portfolio beta. A maximized dividend yield or minimized beta

6. An everly risk-constrained or factor-constrained portfolio may have much more out-of-sample risk
than a less constrained portfolio.
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portfolio is likely to have a much smaller dividend yield or larger beta
out-of-sample than that estimated in the optimization.

Optimizing more than one variable may create additional biases. For
example, beta and dividend yield have a negative correlation. Optimiz-
ing correlated variables in the same optimization can create synergistic
biases and unpredictable portfolio behavior.

In general, the more demands placed on the optimization, the more
likely the out-of-sample performance of the optimized portfolio will dis-
appoint. Such effects are endemic to all optimization processes. To be
effective, a user should be aware of an optimizer’s inherent limitations
in using statistically estimated data and conservative in the demands
made of the optimization process. However, it should be noted that RE
optimization substantially reduces optimization biases in many cases.

INDEX FUNDS AND OPTIMIZERS

The purpose of an index fund is to track an index. One method for
constructing index funds is to use MV optimization. The objective is
to minimize the residual or tracking error. Because there are no return
estimates, an index fund optimization is significantly more stable than a
more typical MV optimization. For this reason, optimization may appear
as the tool of choice for constructing index-tracking portfolios. However,
because of competitive pressures, manager tolerance for tracking error
is generally much smaller than for active portfolios. Even small errors
in tracking error estimation can have (and have had) significant negative
business consequences.

There are two alternative ways to construct index funds in practice:
replication and stratified sampling. Index replication is constructing an
index-weighted portfolio consisting of all the securities in the index.”
Stratification is a statistical sampling procedure for constructing a rep-
resentative sample portfolio of securities in the index, usually based on
index-weighted representative tiers of sectors of securities in the index.
The three procedures differ in comprehensiveness of representation of
the index: Replication is the most comprehensive, whereas optimization
is usually the least.

Various considerations determine which procedure to choose in a
given situation. Minimum tracking error and rebalancing issues may
make replication the method of choice for long-term investors. In some
cases where the liquidity or holding costs of stocks in an index are a major
consideration, optimization or stratified sampling may be more appropri-
ate alternatives. In some emerging markets where a reliable risk model
may not be available, stratification may be the procedure of choice.

7. In practice, the portfolio may exclude many small stocks.
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OPTIMIZATION FROM CASH

The appropriate procedure for optimizing an equity portfolio may depend
on whether the optimization starts from cash or from a fully invested
equity portfolio (Erlich, 1997). To frame the issue, note that equity port-
folios are generally decomposable into two portfolios: an index fund and
a pure active or arbitrage portfolio.® If we suppose an indefinite holding
period for the invested assets, rebalancing may occur many times over
the life of the fund.

An active manager optimizes the portfolio according to the active
return forecasts. Conceptually, the index is the appropriate starting port-
folio. When optimizing from cash, however, the objective of optimally
investing in the active or arbitrage portfolio conflicts with the need to
convert cash into the index. The active return forecasts are relevant for
a single, often relatively short-term, forecast period. Each rebalancing
period has different active return forecasts. In contrast, the index com-
ponent of the fund is relatively stable. Eventually, the cost of convert-
ing cash into the stock index is paid. The optimizer has to compromise
between the dual objectives of finding an optimal arbitrage portfolio and
investing in the stock index portfolio. Rebalancing periods when the pur-
chase of the index fund is incomplete exposes the optimized portfolio to
unnecessary and irrelevant risk and trading costs.

A preferable procedure is to invest cash in two optimization steps.
First, find an optimal portfolio from cash, omitting active return fore-
casts, that considers the investor's objectives and constraints, including
residual risk target, desired number of securities, and trading cost esti-
mates. This step defines a neutral or index-like portfolio that reflects the
normal constraints and objectives that are part of the relatively stable
structure of the fund. The second step starts with the neutral portfolio
to define an optimal active portfolio as a function of the active return
forecasts. The arbitrage component of the active portfolio in the second-
step optimization reflects tradeoffs between return forecasts, risk, and
trading costs independent of the need to convert cash into equities.
Because the cost of buying the neutral portfolio has to be paid, there is no
overall increase in trading cost over the normal life of the fund.

The Erlich two-step optimization procedure balances the long-term
objective of buying the neutral portfolio with the shorter-term objective
of implementing the active return forecasts. The procedure is likely to
result in better performance, less risk, more stability during early rebal-
ancings, and a reduction in overall trading costs.

Cash optimization may also be useful when adding cash to an
equity portfolio. More generally, two-step optimization may be useful
when there is a change in the benchmark portfolio or other long-term

8. The weights of the arbitrage portfolio sum te zero, while the index fund weights sum to one. See
Michaud (1993) for further discussion.
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characteristics of the fund. The importance of two-step optimization may
increase as the size of the stock universe and level of active portfolio risk
increases. For low-risk and single-country equity portfolios, the benefits
may not be significant.

FORECAST RETURN LIMITATIONS

Useful optimized portfolios require careful control of portfolio structure.
This is because forecast returns may have implicit structural biases that
are not part of the information in the stock valuation process.

Generally, active equity optimization returns are adjusted for system-
atic risk. However, there are many open theoretical and practical issues
with estimating the return associated with systematic risk. For example,
Kandel and Stambaugh (1995) note some important limitations of widely
used econometric estimation methods. From another perspective, Berk’s
(1995) theoretical analysis suggests that many systematic risk frameworks
may not correctly reflect the risk of small stocks. In addition, the proper
theoretical framework for estimating systematic risk remains controver-
sial in some cases.’

Another source of biases may come from the structure of the returns.
Suppose that the stock forecasts are market sector neutral.® For example,
a forecast may be based on a factor-return regression that includes sector
dummy variables to adjust for sector returns. Nevertheless, the uncon-
strained optimized portfolio may exhibit large overweights and under-
weights in various market sectors. If there is no sector information in the
return forecast, why are there sector underweights and overweights?

Variables used to forecast return, such as the book-to-price ratio, are
likely to have larger-than-average values in some sectors than in others.
A larger-than-average value of the forecast factors in a sector is likely to
lead to a larger-than-average value of forecast return in the sector. Conse-
quently, all other things the same, the unconstrained optimized portfolio
is overweighted in some sectors and underweighted in others. However,
by definition of a sector-neutral forecast, there is no sector weighting
information in the return.!! In this case, the structure of returns leads
to inadvertent portfolio biases that are not consistent with the sources
of information in the forecast. One simple way to eliminate inadvertent
biases in optimized portfolios is to impose index weight constraints on
factor exposures that do not reflect forecast return information.

9. For example, Shanken (1992, 1996) provides critiques of the arbitrage pricing theory framework that
is the basis of many commercial models of equity risk measurement.
10. Michaud (1999) provides an example.

11. It should be noted that other formulations of forecast return may have sector-weighting informa-
tion. The point of the example is to show that inadvertent portfolio bets may appear in an uncon-
strained optimized portfolio.
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Biases in forecast returns may be pervasive and are often very subtle.
Analysts and investment managers need to be diligent in detecting and
eliminating such biases. Portfolio optimization is likely to fail to provide
useful investment portfolios unless the process is well formulated and
consistent with risk estimation and the relevant sources of information
in the forecasts.

CONCLUSION

Avoiding implementation errors is important for capturing and enhan-
cing the investment value of optimizers. Thoughtful consideration of
investment theory and intuition, investor objectives, forecast return
biases, and optimizer behavior leads to specialized techniques that may
have a significant positive impact on portfolio structure and optimized
portfolio performance.



Epilogue

The most serious limitations of MV efficiency as a practical tool of
investment management are instability, ambiguity, ineffectiveness, and
rigidity. Small input errors lead to large errors in the optimized portfolio.
By maximizing the use of statistical errors in parameter estimates, an
MYV optimized portfolio often has little, if any, investment value. In addi-
tion, because of instability, MV efficiency may be ambiguous and poorly
defined in practice.

The practical limitations of MV optimization are not a reflection of
conceptual flaws in Markowitz MV efficiency but of implementation.
Markowitz gives you the right way to invest in many practical cases
assuming you have, and know that you have, the correct estimates. But
investment information is inherently uncertain. MV optimization ignores
the statistical character of investment information. The power of the algo-
rithm is generally far greater than the level of investment information in
the inputs. Alternatives to MV efficiency typically have significant practi-
cal limitations and do not improve investment effectiveness.

Implementation errors often reflect a lack of understanding of the
importance of estimation error and the fundamental statistical nature
of portfolio optimization. MV optimization is simply statistical estima-
tion and requires statistical methods and analysis. Although statistical
methods have developed naturally in the context of multivariate linear
regression, the history of MV efficiency has had a limiting effect on its
statistical development until now. Resampling is the procedure of choice
for dealing with the statistical character of investment information in lin-
ear constrained MV optimized portfolios. Resampled Efficiency methods
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use the uncertainty implicit in investment information to improve asset
management in practice.

Historically, large segments of the institutional investment manage-
ment community have ignored MV optimization. In hindsight, the rea-
son is simply because MV optimization did not work well enough to add
investment value and represented too rigid a framework for sophisticated
asset management. Yet the investment community has much at stake in
improving Markowitz efficiency. MV optimization properly used is the
wide-spectrum engine of choice for sophisticated asset management for
many applications in practice.

Much effort remains to improve the investment value of MV optimiza-
tion. There are many open issues and challenges. An awareness of their
importance will, it is hoped, spur funding and research in these areas. How-
ever, the fact that the limitations of MV optimization have been ignored for
50 long raises troubling issues of the state of sophistication of institutional
research and investment practice and of academic—professional relation-
ships.! Perhaps some lasting lessons can be learned for the future.

1. That much pioneering work on estimation error and the limitations of MV optimization as a practi-
cal tool for asset management was ignored for many vears has numerous parallels in the history of
science. A notable recent example is described in Altman (2005) of Dr. A. Stone Freedberg of
Harvard who in 1940 published his findings of the bacterial cause of ulcers and a possible cure. Sub-
sequent flawed research failed to corroborate his findings and closed the publishing door on further
work on curing ulcers for more than fifty years. The 2005 Nobel Prize in Medicine was awarded for
independently discovering and verifying Dr. Freedberg’s results. Science has a strong vested interest
in correcting erroneous notions before flawed research takes root and leads researchers away from
productive paths.
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Quadratic programming, 11, 18, 27
Quadratic utility, 22
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RE optimization. See Optimization,
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expected, 7,11
global market, 95
liability, 80
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semistandard deviation of, 20
systematic, 12,115
Return premium, 16, 71
Risk, 20, 110n
Risk models, 12,75, 112
Risk-free rate, 16
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Sharpe ratio, 30-33, 36

Sharpe style analysis, 65

Sharpe-Lintner CAPM. See CAPM
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Standard deviation, 7-8, 20

Standard error, 65

Statistical inference, 61

Statistical perspective, ix

Stein estimation, 41, 6§-79

Strategic asset allocation, 89, 101
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Style analysis, 65
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Tactical asset allocation, 80, 89, 101
Test statistics, 61
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Trading costs, 109, 110n

Trading rules, 60

Two-risk measurement, 112

Usmen, N., 106-107
Utility functions, 34n, 43, 110n
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optimization. See Optimization,
utility function
and input estimation, 77

Variable benefit obligation
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